Skip to main content
Top

2023 | OriginalPaper | Chapter

6. Abuse Response of Batteries Subjected to Mechanical Impact

Authors : Jinyong Kim, Anudeep Mallarapu, Shriram Santhanagopalan

Published in: Computer Aided Engineering of Batteries

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrochemical and thermal models to simulate nominal performance and abuse response of lithium-ion cells and batteries have been reported widely in the literature. Studies on mechanical failure of cell components and how such events interact with the electrochemical and thermal response are relatively less common. This chapter outlines a framework developed under the Computer Aided Engineering for Batteries program to couple failure modes resulting from external mechanical loading to the onset and propagation of electrochemical and thermal events that follow. Starting with a scalable approach to implement failure criteria based on thermal, mechanical, and electrochemical thresholds, we highlight the practical importance of these models using case studies at the cell and module level. The chapter also highlights a few gaps in our understanding of the comprehensive response of batteries subjected to mechanical crash events, the stochastic nature of some of these failure events, and our approach to build safety maps that help improve robustness of battery design by capturing the sensitivity of some key design parameters to heat generation rates under different mitigation strategies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hollmotz L, Hackmann M (2006) Lithium ion batteries for hybrid and electric vehicles – risks, requirements and solutions out of the crash safety point of view. EVS 22. Paper 11-0269, pp 1–9 Hollmotz L, Hackmann M (2006) Lithium ion batteries for hybrid and electric vehicles – risks, requirements and solutions out of the crash safety point of view. EVS 22. Paper 11-0269, pp 1–9
3.
go back to reference Bartolo M (2012) EV vehicle safety. Electric vehicle safety technical symposium, pp 6–15 Bartolo M (2012) EV vehicle safety. Electric vehicle safety technical symposium, pp 6–15
4.
go back to reference Doughty DH (2012) Vehicle battery safety roadmap guidance, NREL Report No. SR-5400-54404 Doughty DH (2012) Vehicle battery safety roadmap guidance, NREL Report No. SR-5400-54404
7.
go back to reference Marcicki J, Zhu M, Bartlett A, Yang XG, Chen Y, Miller I, L’Eplattenier T, Caldichoury P (2017) A simulation framework for battery cell impact safety modeling using LS-DYNA. J Electrochem Soc 164(1):A6440–A6448CrossRef Marcicki J, Zhu M, Bartlett A, Yang XG, Chen Y, Miller I, L’Eplattenier T, Caldichoury P (2017) A simulation framework for battery cell impact safety modeling using LS-DYNA. J Electrochem Soc 164(1):A6440–A6448CrossRef
11.
go back to reference Lai W-J, Ali MY, Pan J (2014) Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions. J Power Sources 248:789–808CrossRef Lai W-J, Ali MY, Pan J (2014) Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions. J Power Sources 248:789–808CrossRef
12.
go back to reference Lai W-J, Ali MY, Pan J (2014) Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions. J Power Sources 245:609–623CrossRef Lai W-J, Ali MY, Pan J (2014) Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions. J Power Sources 245:609–623CrossRef
13.
go back to reference Luo H, Juner Z, Sahraei E, Xia Y (2018) Adhesion strength of the cathode in lithium-ion batteries under combined tension/shear loadings. RSC Adv 8:3996–4005CrossRef Luo H, Juner Z, Sahraei E, Xia Y (2018) Adhesion strength of the cathode in lithium-ion batteries under combined tension/shear loadings. RSC Adv 8:3996–4005CrossRef
14.
go back to reference Sheidaei A, Xiao X, Huang X, Hitt J (2011) Mechanical behavior of a battery separator in electrolyte solutions. J Power Sources 196(20):8728–8734CrossRef Sheidaei A, Xiao X, Huang X, Hitt J (2011) Mechanical behavior of a battery separator in electrolyte solutions. J Power Sources 196(20):8728–8734CrossRef
18.
go back to reference Xu J, Liu B, Wang X, Hu D (2016) Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies. Appl Energy 172:180–189CrossRef Xu J, Liu B, Wang X, Hu D (2016) Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies. Appl Energy 172:180–189CrossRef
20.
go back to reference Steele LAM, Lamb J, Gorsso C, Quintana J, Torres-Castro J, Stanley L (2017) Battery safety testing. In: 2017 vehicle technologies office energy storage annual merit review, p ES203 Steele LAM, Lamb J, Gorsso C, Quintana J, Torres-Castro J, Stanley L (2017) Battery safety testing. In: 2017 vehicle technologies office energy storage annual merit review, p ES203
22.
go back to reference Zhang X, Sahraei E, Wang K (Sep. 2016) Deformation and failure characteristics of four types of lithium-ion battery separators. J Power Sources 327:693–701CrossRef Zhang X, Sahraei E, Wang K (Sep. 2016) Deformation and failure characteristics of four types of lithium-ion battery separators. J Power Sources 327:693–701CrossRef
25.
go back to reference Sahraei E, Wierzbicki T, Hill R, Luo H (2010) Crash safety of lithium-ion batteries towards development of a computational model. In: SAE technical paper. pp. 2010–01–1078 Sahraei E, Wierzbicki T, Hill R, Luo H (2010) Crash safety of lithium-ion batteries towards development of a computational model. In: SAE technical paper. pp. 2010–01–1078
28.
go back to reference Kermani G, Keshavarzi MM, Sahraei E (2021) Deformation of lithium-ion batteries under axial loading: analytical model and representative volume element. Energy Rep 7:2849–2861CrossRef Kermani G, Keshavarzi MM, Sahraei E (2021) Deformation of lithium-ion batteries under axial loading: analytical model and representative volume element. Energy Rep 7:2849–2861CrossRef
32.
go back to reference Newman J, Tiedemann W (1975) Porous electrode theory with battery applications. AICHE J 21(1):25–41CrossRef Newman J, Tiedemann W (1975) Porous electrode theory with battery applications. AICHE J 21(1):25–41CrossRef
33.
go back to reference C. Zhang, S. Santhanagopalan, A. Pesaran, E. Sharaei, and T. Wierzbicki, Coupling of mechanical behavior of lithium ion cells to electrochemical-thermal models for battery crush, Presented at the Annual Merit Review of the Vehicle Technologies Office, Washington D.C., June 2015 C. Zhang, S. Santhanagopalan, A. Pesaran, E. Sharaei, and T. Wierzbicki, Coupling of mechanical behavior of lithium ion cells to electrochemical-thermal models for battery crush, Presented at the Annual Merit Review of the Vehicle Technologies Office, Washington D.C., June 2015
36.
go back to reference Sahraei E, Bosco E, Dixon B, Lai B (2016) Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios. J Power Sources 319:56–65CrossRef Sahraei E, Bosco E, Dixon B, Lai B (2016) Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios. J Power Sources 319:56–65CrossRef
37.
go back to reference S. Santhanagopalan, C. Zhang, C. Yang, A. Wu, L. Cao, and A. A. Pesaran, Modeling mechanical failure in lithium-lon batteries, Presented at the Annual Merit Review of the Vehicle Technologies Office, Washington D.C., June 2017 S. Santhanagopalan, C. Zhang, C. Yang, A. Wu, L. Cao, and A. A. Pesaran, Modeling mechanical failure in lithium-lon batteries, Presented at the Annual Merit Review of the Vehicle Technologies Office, Washington D.C., June 2017
38.
go back to reference Wang H, Simunovic S, Maleki H, Howard JN, Hallmark JA (2016) Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit. J Power Sources 306:424–430CrossRef Wang H, Simunovic S, Maleki H, Howard JN, Hallmark JA (2016) Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit. J Power Sources 306:424–430CrossRef
40.
go back to reference Wierzbicki T, Sahraei E (2013) Homogenized mechanical properties for the jellyroll of cylindrical Lithium-ion cells. J Power Sources 241:467–476CrossRef Wierzbicki T, Sahraei E (2013) Homogenized mechanical properties for the jellyroll of cylindrical Lithium-ion cells. J Power Sources 241:467–476CrossRef
41.
go back to reference J. O. Hallquist, Livermore software technology corporation, LS-DYNA theory manual, 2006 J. O. Hallquist, Livermore software technology corporation, LS-DYNA theory manual, 2006
42.
go back to reference Borrvall T, Erhart T (2006) A user-defined element interface in LS-DYNA v971, No 4, pp 25–34 Borrvall T, Erhart T (2006) A user-defined element interface in LS-DYNA v971, No 4, pp 25–34
43.
go back to reference Marcicki J et al (2016) Battery abuse case study analysis using LS-DYNA. In: Proceedings of the 14th LS-DYNA user conference, Dearborn, pp 12–14 Marcicki J et al (2016) Battery abuse case study analysis using LS-DYNA. In: Proceedings of the 14th LS-DYNA user conference, Dearborn, pp 12–14
47.
go back to reference Zhang C, Waksmanski N, Wheeler VM, Pan E, Larsen RE (2015) The effect of photodegradation on effective properties of polymeric thin films: a micromechanical homogenization approach. Int J Eng Sci 94:1–22CrossRef Zhang C, Waksmanski N, Wheeler VM, Pan E, Larsen RE (2015) The effect of photodegradation on effective properties of polymeric thin films: a micromechanical homogenization approach. Int J Eng Sci 94:1–22CrossRef
52.
go back to reference Gu WB, Wang C-Y (2000) Thermal and electrochemical coupled modeling of a lithium-ion cell, in lithium batteries. ECS Proc 99–25(1):748–762 Gu WB, Wang C-Y (2000) Thermal and electrochemical coupled modeling of a lithium-ion cell, in lithium batteries. ECS Proc 99–25(1):748–762
61.
go back to reference Kim G-H, Smith K, Pesaran AA (2009) Lithium-ion battery safety study using multi-physics internal short-circuit model Kim G-H, Smith K, Pesaran AA (2009) Lithium-ion battery safety study using multi-physics internal short-circuit model
64.
go back to reference Ayachit U (2015) The ParaView guide: a parallel visualization application, Kitware Ayachit U (2015) The ParaView guide: a parallel visualization application, Kitware
65.
go back to reference Wald I, Woop S, Benthin C, Johnson GS, Ernst M (2014) Embree – a kernel framework for efficient CPU ray tracing. ACM Trans Graph, pp 1–8 Wald I, Woop S, Benthin C, Johnson GS, Ernst M (2014) Embree – a kernel framework for efficient CPU ray tracing. ACM Trans Graph, pp 1–8
66.
go back to reference Cignoni P, Callieri M, Corsini M, Dellepiane M (2008) MeshLab: an open-source mesh processing tool. In: European Italian conference, pp 129–136 Cignoni P, Callieri M, Corsini M, Dellepiane M (2008) MeshLab: an open-source mesh processing tool. In: European Italian conference, pp 129–136
68.
go back to reference Santhanagopalan S (2017) Efficient simulation and abuse modeling of mechanical-electrochemical-thermal phenomena in lithium-ion batteries. In: Vehicle Technologies Office, Annual Merit Review, p ES298 Santhanagopalan S (2017) Efficient simulation and abuse modeling of mechanical-electrochemical-thermal phenomena in lithium-ion batteries. In: Vehicle Technologies Office, Annual Merit Review, p ES298
86.
go back to reference Kim J, Mallarapu A, Finegan DP, Santhanagopalan S (2021) Modeling cell venting and gas-phase reactions in 18650 lithium ion batteries during thermal runaway. J Power Sources 489:229496CrossRef Kim J, Mallarapu A, Finegan DP, Santhanagopalan S (2021) Modeling cell venting and gas-phase reactions in 18650 lithium ion batteries during thermal runaway. J Power Sources 489:229496CrossRef
87.
go back to reference Energy Storage Integration Council (ESIC) Energy Storage Reference Fire Hazard Mitigation Analysis. EPRI, Palo Alto, CA: 2019. 3002017136 Energy Storage Integration Council (ESIC) Energy Storage Reference Fire Hazard Mitigation Analysis. EPRI, Palo Alto, CA: 2019. 3002017136
92.
go back to reference Barnett B, Ofer D, Sriramulu S, Stringfellow R (2012) Lithium-ion batteries – safety. In: Encyclopedia of Sustainability Science and Technology, Meyers RA (ed). Springer, New York Barnett B, Ofer D, Sriramulu S, Stringfellow R (2012) Lithium-ion batteries – safety. In: Encyclopedia of Sustainability Science and Technology, Meyers RA (ed). Springer, New York
94.
go back to reference Kim J, Mallarapu A, Yang C, Santhanagopalan S (2021) Modeling cell venting and gas-phase reactions in lithium-ion cells during thermal runaway. Presented at the AABC 2021. Kim J, Mallarapu A, Yang C, Santhanagopalan S (2021) Modeling cell venting and gas-phase reactions in lithium-ion cells during thermal runaway. Presented at the AABC 2021.
Metadata
Title
Abuse Response of Batteries Subjected to Mechanical Impact
Authors
Jinyong Kim
Anudeep Mallarapu
Shriram Santhanagopalan
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-17607-4_6