Skip to main content
Top
Published in: Computational Mechanics 2/2016

01-08-2016 | Original Paper

Accelerated multiscale space–time finite element simulation and application to high cycle fatigue life prediction

Authors: Rui Zhang, Lihua Wen, Sam Naboulsi, Thomas Eason, Vijay K. Vasudevan, Dong Qian

Published in: Computational Mechanics | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A multiscale space–time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space–time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space–time implementation scale with the number of degree of freedom N through \({\sim }\hbox {O}(N^{1.6})\) and \({\sim }\hbox {O}(N)\), respectively. Finally, we demonstrate the accelerated space–time FEM simulation through benchmark problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Oden JT (1969) A general theory of finite elements. II. Applications. Int J Numer Methods Eng 1:247–259CrossRefMATH Oden JT (1969) A general theory of finite elements. II. Applications. Int J Numer Methods Eng 1:247–259CrossRefMATH
2.
3.
go back to reference Argyris JH, Scharpf DW (1969) Finite elements in time and space. Nucl Eng Des 10:456–464CrossRef Argyris JH, Scharpf DW (1969) Finite elements in time and space. Nucl Eng Des 10:456–464CrossRef
4.
go back to reference Hughes TJR, Franca LP, Mallet M (1987) A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems. Comput Methods Appl Mech Eng 63:97–112MathSciNetCrossRefMATH Hughes TJR, Franca LP, Mallet M (1987) A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems. Comput Methods Appl Mech Eng 63:97–112MathSciNetCrossRefMATH
5.
go back to reference Lesaint P, Raviart PA (1974) On a finite element method for solving the neutron transport equation. In: de Boor C (ed) Mathematical aspects of finite elements in partial differential equations. Academic Press, New York, pp 89–123 Lesaint P, Raviart PA (1974) On a finite element method for solving the neutron transport equation. In: de Boor C (ed) Mathematical aspects of finite elements in partial differential equations. Academic Press, New York, pp 89–123
6.
go back to reference Reed WH, Hill TR (1973) Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory, Los Alamos LA-UR-73-479 Reed WH, Hill TR (1973) Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory, Los Alamos LA-UR-73-479
7.
go back to reference Johnson C (1988) Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations. SIAM J Numer Anal 25:908–926MathSciNetCrossRefMATH Johnson C (1988) Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations. SIAM J Numer Anal 25:908–926MathSciNetCrossRefMATH
8.
9.
go back to reference Hulbert GM, Hughes TJR (1990) Space-time finite element methods for second-order hyperbolic equations. Comput Methods Appl Mech Eng 84:327–348MathSciNetCrossRefMATH Hulbert GM, Hughes TJR (1990) Space-time finite element methods for second-order hyperbolic equations. Comput Methods Appl Mech Eng 84:327–348MathSciNetCrossRefMATH
11.
go back to reference Li XD, Wiberg NE (1998) Implementation and adaptivity of a space-time finite element method for structural dynamics. Comput Methods Appl Mech Eng 156:211–229MathSciNetCrossRefMATH Li XD, Wiberg NE (1998) Implementation and adaptivity of a space-time finite element method for structural dynamics. Comput Methods Appl Mech Eng 156:211–229MathSciNetCrossRefMATH
12.
go back to reference Li XD, Wiberg NE (1996) Structural dynamic analysis by a time-discontinuous Galerkin finite element method. Int J Numer Methods Eng 39:2131–2152MathSciNetCrossRefMATH Li XD, Wiberg NE (1996) Structural dynamic analysis by a time-discontinuous Galerkin finite element method. Int J Numer Methods Eng 39:2131–2152MathSciNetCrossRefMATH
13.
go back to reference Strouboulis T, Babuška I, Copps K (2000) The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng 181:43–69MathSciNetCrossRefMATH Strouboulis T, Babuška I, Copps K (2000) The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng 181:43–69MathSciNetCrossRefMATH
14.
go back to reference Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150CrossRefMATH Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150CrossRefMATH
15.
go back to reference Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314MathSciNetCrossRefMATH Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314MathSciNetCrossRefMATH
16.
go back to reference Chirputkar SU, Qian D (2008) Coupled atomistic/continuum simulation based on extended space-time finite element method. CMES Comput Model Eng Sci 24:185–202MathSciNetMATH Chirputkar SU, Qian D (2008) Coupled atomistic/continuum simulation based on extended space-time finite element method. CMES Comput Model Eng Sci 24:185–202MathSciNetMATH
17.
go back to reference Chessa J, Belytschko T (2004) Arbitrary discontinuities in space-time finite elements by level sets and X-FEM. Int J Numer Methods Eng 61:2595–2614MathSciNetCrossRefMATH Chessa J, Belytschko T (2004) Arbitrary discontinuities in space-time finite elements by level sets and X-FEM. Int J Numer Methods Eng 61:2595–2614MathSciNetCrossRefMATH
18.
go back to reference Qian D, Chirputkar S (2014) Bridging scale simulation of lattice fracture using enriched space-time finite element method. Int J Numer Methods Eng 97:819–850MathSciNetCrossRef Qian D, Chirputkar S (2014) Bridging scale simulation of lattice fracture using enriched space-time finite element method. Int J Numer Methods Eng 97:819–850MathSciNetCrossRef
19.
go back to reference Yang Y, Chirputkar S, Alpert DN, Eason T, Spottswood S, Qian D (2012) Enriched space-time finite element method: a new paradigm for multiscaling from elastodynamics to molecular dynamics. Int J Numer Methods Eng 92:115–140MathSciNetCrossRef Yang Y, Chirputkar S, Alpert DN, Eason T, Spottswood S, Qian D (2012) Enriched space-time finite element method: a new paradigm for multiscaling from elastodynamics to molecular dynamics. Int J Numer Methods Eng 92:115–140MathSciNetCrossRef
20.
go back to reference Bhamare S, Eason T, Spottswood S, Mannava SR, Vasudevan VK, Qian D (2014) A multi-temporal scale approach to high cycle fatigue simulation. Comput Mech 53:387–400CrossRefMATH Bhamare S, Eason T, Spottswood S, Mannava SR, Vasudevan VK, Qian D (2014) A multi-temporal scale approach to high cycle fatigue simulation. Comput Mech 53:387–400CrossRefMATH
21.
go back to reference Hughes TJR, Hulbert GM (1988) Space-time finite element methods for elastodynamics: formulations and error estimates. Comput Methods Appl Mech Eng 66:339–363MathSciNetCrossRefMATH Hughes TJR, Hulbert GM (1988) Space-time finite element methods for elastodynamics: formulations and error estimates. Comput Methods Appl Mech Eng 66:339–363MathSciNetCrossRefMATH
23.
24.
go back to reference Davis T (2006) Direct methods for sparse linear systems. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefMATH Davis T (2006) Direct methods for sparse linear systems. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefMATH
25.
go back to reference Chien CC, Wu TY (2000) An improved predictor/multi-corrector algorithm for a time-discontinuous Galerkin finite element method in structural dynamics. Comput Mech 25:430–437CrossRefMATH Chien CC, Wu TY (2000) An improved predictor/multi-corrector algorithm for a time-discontinuous Galerkin finite element method in structural dynamics. Comput Mech 25:430–437CrossRefMATH
26.
go back to reference Chien CC, Yang CS, Tang JH (2003) Three-dimensional transient elastodynamic analysis by a space and time-discontinuous Galerkin finite element method. Finite Elem Anal Des 39:561–580CrossRef Chien CC, Yang CS, Tang JH (2003) Three-dimensional transient elastodynamic analysis by a space and time-discontinuous Galerkin finite element method. Finite Elem Anal Des 39:561–580CrossRef
27.
go back to reference Kunthong P, Thompson LL (2005) An efficient solver for the high-order accurate time-discontinuous Galerkin (TDG) method for second-order hyperbolic systems. Finite Elem Anal Des 41:729–762MathSciNetCrossRef Kunthong P, Thompson LL (2005) An efficient solver for the high-order accurate time-discontinuous Galerkin (TDG) method for second-order hyperbolic systems. Finite Elem Anal Des 41:729–762MathSciNetCrossRef
28.
go back to reference Mancuso M, Ubertini F (2006) An efficient time discontinuous Galerkin procedure for non-linear structural dynamics. Comput Methods Appl Mech Eng 195:6391–6406CrossRefMATH Mancuso M, Ubertini F (2006) An efficient time discontinuous Galerkin procedure for non-linear structural dynamics. Comput Methods Appl Mech Eng 195:6391–6406CrossRefMATH
29.
go back to reference Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869MathSciNetCrossRefMATH Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869MathSciNetCrossRefMATH
30.
go back to reference Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefMATH Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefMATH
31.
33.
go back to reference George A, Liu J, Ng E (1994) Computer solution of sparse linear systems. Academic, Orlando George A, Liu J, Ng E (1994) Computer solution of sparse linear systems. Academic, Orlando
34.
go back to reference Kilic SA (2012) Effect of ordering for iterative solvers in structural mechanics problems. In: Berry MW, Gallivan KA, Gallopoulos E, Grama A, Philippe B, Saad Y et al (eds) High-performance scientific computing: algorithms and applications. Springer, London, pp 251–260CrossRef Kilic SA (2012) Effect of ordering for iterative solvers in structural mechanics problems. In: Berry MW, Gallivan KA, Gallopoulos E, Grama A, Philippe B, Saad Y et al (eds) High-performance scientific computing: algorithms and applications. Springer, London, pp 251–260CrossRef
35.
go back to reference Lemaitre J, Doghri I (1994) Damage 90: a post processor for crack initiation. Comput Methods Appl Mech Eng 115:197–232CrossRef Lemaitre J, Doghri I (1994) Damage 90: a post processor for crack initiation. Comput Methods Appl Mech Eng 115:197–232CrossRef
36.
go back to reference Lemaitre J, Sermage JP, Desmorat R (1999) A two scale damage concept applied to fatigue. Int J Fract 97:67–81CrossRef Lemaitre J, Sermage JP, Desmorat R (1999) A two scale damage concept applied to fatigue. Int J Fract 97:67–81CrossRef
37.
go back to reference Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A Math Phys Sci 241:376–396MathSciNetCrossRefMATH Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A Math Phys Sci 241:376–396MathSciNetCrossRefMATH
38.
go back to reference Kröner E (1961) On the plastic deformation of polycrystals. Acta Metall 9:155–161CrossRef Kröner E (1961) On the plastic deformation of polycrystals. Acta Metall 9:155–161CrossRef
39.
go back to reference Bhamare SD (2012) High cycle fatigue simulation using extended space-time finite element method coupled with continuum damage mechanics. University of Cincinnati, Cincinnati Bhamare SD (2012) High cycle fatigue simulation using extended space-time finite element method coupled with continuum damage mechanics. University of Cincinnati, Cincinnati
40.
go back to reference Desmorat R, Kane A, Seyedi M, Sermage JP (2007) Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue. Eur J Mech A Solids 26:909–935CrossRefMATH Desmorat R, Kane A, Seyedi M, Sermage JP (2007) Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue. Eur J Mech A Solids 26:909–935CrossRefMATH
41.
go back to reference Takahashi T, Hamada T (2009) GPU-accelerated boundary element method for Helmholtz’ equation in three dimensions. Int J Numer Methods Eng 80:1295–1321MathSciNetCrossRefMATH Takahashi T, Hamada T (2009) GPU-accelerated boundary element method for Helmholtz’ equation in three dimensions. Int J Numer Methods Eng 80:1295–1321MathSciNetCrossRefMATH
42.
go back to reference Clough RW, Penzien J (1993) Dynamics of structures, 2nd edn. McGraw-Hill, New YorkMATH Clough RW, Penzien J (1993) Dynamics of structures, 2nd edn. McGraw-Hill, New YorkMATH
43.
go back to reference Paz M, Leigh W (2004) Structural dynamics: theory and computation, 5th edn. Springer, New YorkCrossRef Paz M, Leigh W (2004) Structural dynamics: theory and computation, 5th edn. Springer, New YorkCrossRef
44.
go back to reference Vincent L, Le Roux JC, Taheri S (2012) On the high cycle fatigue behavior of a type 304L stainless steel at room temperature. Int J Fatigue 38:84–91CrossRef Vincent L, Le Roux JC, Taheri S (2012) On the high cycle fatigue behavior of a type 304L stainless steel at room temperature. Int J Fatigue 38:84–91CrossRef
45.
go back to reference Poncelet M, Barbier G, Raka B, Courtin S, Desmorat R, Le-Roux JC et al (2010) Biaxial high cycle fatigue of a type 304L stainless steel: cyclic strains and crack initiation detection by digital image correlation. Eur J Mech A Solids 29:810–825CrossRef Poncelet M, Barbier G, Raka B, Courtin S, Desmorat R, Le-Roux JC et al (2010) Biaxial high cycle fatigue of a type 304L stainless steel: cyclic strains and crack initiation detection by digital image correlation. Eur J Mech A Solids 29:810–825CrossRef
Metadata
Title
Accelerated multiscale space–time finite element simulation and application to high cycle fatigue life prediction
Authors
Rui Zhang
Lihua Wen
Sam Naboulsi
Thomas Eason
Vijay K. Vasudevan
Dong Qian
Publication date
01-08-2016
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 2/2016
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-016-1296-9

Other articles of this Issue 2/2016

Computational Mechanics 2/2016 Go to the issue