Skip to main content
Top

2022 | OriginalPaper | Chapter

Accelerating Simulated Quantum Annealing with GPU and Tensor Cores

Authors : Yi-Hua Chung, Cheng-Jhih Shih, Shih-Hao Hung

Published in: High Performance Computing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Inspired by quantum annealing, simulated quantum annealing (SQA) mimics quantum tunneling effects on classical computers to perform annealing through a path-integral Monte Carlo simulation, which increases the potential to find the global optima faster than traditional annealing algorithms for large-size combinatorial optimization problems while today’s quantum annealing systems are of a limited number of qubits’. As previous studies have accelerated SQA with Graphics Processing Unit (GPU) and specialized hardware such as Field Programmable Gate Array (FPGA), we propose an innovative parallelizing strategy called hierarchical update to vastly improve the efficiency of parallel computing, which is capable of accelerating state-of-the-art SQA implementations further by 7X-47.2X based on our case studies. Furthermore, we develop a tensorizing scheme to leverage the Tensor Cores on modern GPUs to deliver up to 1.83X of additional speedup. Overall, our work solves fully-connected Ising models faster than any previous SQA work. Our solution outperforms existing GPU-based solutions by 86.6X and FPGA-based solutions by 14X.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We acknowledge the authors for sending us the experiment results.
 
2
The speedup is up to 120\(\times \) if (N,M) = (4096,512) is included.
 
3
SA can be treated as a special case of SQA with M = 1.
 
Literature
1.
go back to reference Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355 (1998) Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355 (1998)
2.
go back to reference Venturelli, D., Kondratyev, A.: Reverse quantum annealing approach to portfolio optimization problems. Quantum Mach. Intell. 1(1), 17–30 (2019) Venturelli, D., Kondratyev, A.: Reverse quantum annealing approach to portfolio optimization problems. Quantum Mach. Intell. 1(1), 17–30 (2019)
3.
go back to reference Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G., Aspuru-Guzik, A.: Finding low-energy conformations of lattice protein models by quantum annealing. Sci. Rep. 2(1), 1–7 (2012)CrossRef Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G., Aspuru-Guzik, A.: Finding low-energy conformations of lattice protein models by quantum annealing. Sci. Rep. 2(1), 1–7 (2012)CrossRef
4.
go back to reference Papalitsas, C., Andronikos, T., Giannakis, K., Theocharopoulou, G., Fanarioti, S.: A QUBO model for the traveling salesman problem with time windows. Algorithms 12(11), 224 (2019)CrossRef Papalitsas, C., Andronikos, T., Giannakis, K., Theocharopoulou, G., Fanarioti, S.: A QUBO model for the traveling salesman problem with time windows. Algorithms 12(11), 224 (2019)CrossRef
5.
go back to reference Cipra, B.A.: The Ising model is NP-complete. SIAM News 33(6), 1–3 (2000) Cipra, B.A.: The Ising model is NP-complete. SIAM News 33(6), 1–3 (2000)
6.
go back to reference Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)CrossRefMATH Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)CrossRefMATH
7.
go back to reference Heim, B., Ronnow, T.F., Isakov, S.V., Troyer, M.: Quantum versus classical annealing of Ising spin glasses. Science 348(6231), 215–217 (2015)CrossRefMATH Heim, B., Ronnow, T.F., Isakov, S.V., Troyer, M.: Quantum versus classical annealing of Ising spin glasses. Science 348(6231), 215–217 (2015)CrossRefMATH
8.
go back to reference Suzuki, M.: Relationship between D-dimensional quantal spin systems and (d+1)-dimensional Ising systems: equivalence, critical exponents and systematic approximants of the partition function and spin correlations. Prog. Theor. Phy. 56(5), 1454–1469 (1976)CrossRefMATH Suzuki, M.: Relationship between D-dimensional quantal spin systems and (d+1)-dimensional Ising systems: equivalence, critical exponents and systematic approximants of the partition function and spin correlations. Prog. Theor. Phy. 56(5), 1454–1469 (1976)CrossRefMATH
9.
go back to reference Abdel-Aty, A.H., Khedr, A.N., Saddeek, Y.B., Youssef, A.A.: Thermal entanglement in quantum annealing processor. Int. J. Quantum Inf. 16(01), 1850006 (2018)CrossRefMATH Abdel-Aty, A.H., Khedr, A.N., Saddeek, Y.B., Youssef, A.A.: Thermal entanglement in quantum annealing processor. Int. J. Quantum Inf. 16(01), 1850006 (2018)CrossRefMATH
10.
go back to reference Yamaoka, M., Yoshimura, C., Hayashi, M., Okuyama, T., Aoki, H., Mizuno, H.: A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing. IEEE J. Solid State Circ. 51(1), 303–309 (2015) Yamaoka, M., Yoshimura, C., Hayashi, M., Okuyama, T., Aoki, H., Mizuno, H.: A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing. IEEE J. Solid State Circ. 51(1), 303–309 (2015)
12.
go back to reference Waidyasooriya, H., Hariyama, M.: Highly-parallel FPGA accelerator for simulated quantum annealing. IEEE Trans. Emerg. Topics Comput.9, 2019–2029 (2019) Waidyasooriya, H., Hariyama, M.: Highly-parallel FPGA accelerator for simulated quantum annealing. IEEE Trans. Emerg. Topics Comput.9, 2019–2029 (2019)
13.
go back to reference Liu, C.Y., Waidyasooriya, H.M., Hariyama, M.: Data-transfer-bottleneck-less architecture for FPGA-based quantum annealing simulation. In: 2019 Seventh International Symposium on Computing and Networking (CANDAR), pp. 164–170. IEEE, November 2019 Liu, C.Y., Waidyasooriya, H.M., Hariyama, M.: Data-transfer-bottleneck-less architecture for FPGA-based quantum annealing simulation. In: 2019 Seventh International Symposium on Computing and Networking (CANDAR), pp. 164–170. IEEE, November 2019
14.
go back to reference Okuyama, T., Hayashi, M., Yamaoka, M.: An Ising computer based on simulated quantum annealing by path integral monte carlo method. In: 2017 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–6. IEEE, November 2017 Okuyama, T., Hayashi, M., Yamaoka, M.: An Ising computer based on simulated quantum annealing by path integral monte carlo method. In: 2017 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–6. IEEE, November 2017
15.
go back to reference Weigel, M.: Performance potential for simulating spin models on GPU. J. Comput. Phys. 231(8), 3064–3082 (2012)CrossRefMATH Weigel, M.: Performance potential for simulating spin models on GPU. J. Comput. Phys. 231(8), 3064–3082 (2012)CrossRefMATH
16.
go back to reference Cook, C., Zhao, H., Sato, T., Hiromoto, M., Tan, S.X.D.: GPU based parallel Ising computing for combinatorial optimization problems in VLSI physical design. arXiv preprint (2018). arXiv:1807.10750 Cook, C., Zhao, H., Sato, T., Hiromoto, M., Tan, S.X.D.: GPU based parallel Ising computing for combinatorial optimization problems in VLSI physical design. arXiv preprint (2018). arXiv:​1807.​10750
18.
go back to reference Dattani, N., Szalay, S., Chancellor, N.: Pegasus: the second connectivity graph for large-scale quantum annealing hardware (2019). arXiv preprint arXiv:1901.07636 Dattani, N., Szalay, S., Chancellor, N.: Pegasus: the second connectivity graph for large-scale quantum annealing hardware (2019). arXiv preprint arXiv:​1901.​07636
19.
go back to reference Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7(5), 193–209 (2008) Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7(5), 193–209 (2008)
21.
go back to reference Markidis, S., Der Chien, S.W., Laure, E., Peng, I.B., Vetter, J.S.: Nvidia tensor core programmability, performance & precision. In: 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 522–531. IEEE, May 2018 Markidis, S., Der Chien, S.W., Laure, E., Peng, I.B., Vetter, J.S.: Nvidia tensor core programmability, performance & precision. In: 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 522–531. IEEE, May 2018
22.
go back to reference Waidyasooriya, H.M., Hariyama, M.: A GPU-based quantum annealing simulator for fully-connected Ising models utilizing spatial and temporal parallelism. IEEE Access 8, 67929–67939 (2020)CrossRef Waidyasooriya, H.M., Hariyama, M.: A GPU-based quantum annealing simulator for fully-connected Ising models utilizing spatial and temporal parallelism. IEEE Access 8, 67929–67939 (2020)CrossRef
23.
go back to reference Heim, B., Rønnow, T.F., Isakov, S.V., Troyer, M.: Quantum versus classical annealing of Ising spin glasses. Science 348(6231), 215–217 (2015)CrossRefMATH Heim, B., Rønnow, T.F., Isakov, S.V., Troyer, M.: Quantum versus classical annealing of Ising spin glasses. Science 348(6231), 215–217 (2015)CrossRefMATH
24.
go back to reference Isakov, S.V., Zintchenko, I.N., Rønnow, T.F., Troyer, M.: Optimised simulated annealing for Ising spin glasses. Comput. Phys. Commun. 192, 265–271 (2015)CrossRefMATH Isakov, S.V., Zintchenko, I.N., Rønnow, T.F., Troyer, M.: Optimised simulated annealing for Ising spin glasses. Comput. Phys. Commun. 192, 265–271 (2015)CrossRefMATH
25.
go back to reference Steinberg, A.P., Kosowsky, M., Fraden, S.: Simulations: the Ising Model (2013) Steinberg, A.P., Kosowsky, M., Fraden, S.: Simulations: the Ising Model (2013)
26.
go back to reference Gould, H., Tobochnik, J.: Statistical and Thermal Physics. University Press, Princeton (2010) Gould, H., Tobochnik, J.: Statistical and Thermal Physics. University Press, Princeton (2010)
27.
go back to reference Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983) Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
28.
go back to reference Suzuki, M., Miyashita, S., Kuroda, A.: Monte Carlo simulation of quantum spin systems. I. Prog. Theor. Phys. 58(5), 1377–1387 (1977)CrossRefMATH Suzuki, M., Miyashita, S., Kuroda, A.: Monte Carlo simulation of quantum spin systems. I. Prog. Theor. Phys. 58(5), 1377–1387 (1977)CrossRefMATH
30.
go back to reference Crosson, E., Harrow, A.W.: Simulated quantum annealing can be exponentially faster than classical simulated annealing. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pp. 714–723. IEEE, October 2016 Crosson, E., Harrow, A.W.: Simulated quantum annealing can be exponentially faster than classical simulated annealing. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pp. 714–723. IEEE, October 2016
31.
go back to reference Bravyi, S., Divincenzo, D.P., Oliveira, R.I., Terhal, B.M.: The complexity of stoquastic local Hamiltonian problems (2006). arXiv preprint quant-ph/0606140 Bravyi, S., Divincenzo, D.P., Oliveira, R.I., Terhal, B.M.: The complexity of stoquastic local Hamiltonian problems (2006). arXiv preprint quant-ph/0606140
37.
go back to reference Benlic, U., Hao, J.K.: Breakout local search for the max-cutproblem. Eng. Appl. Artif. Intell. 26(3), 1162–1173 (2013) Benlic, U., Hao, J.K.: Breakout local search for the max-cutproblem. Eng. Appl. Artif. Intell. 26(3), 1162–1173 (2013)
38.
go back to reference Goto, H., et al.:High-performance combinatorial optimization based on classical mechanics. Sci. Adv. 7(6), eabe7953 (2021) Goto, H., et al.:High-performance combinatorial optimization based on classical mechanics. Sci. Adv. 7(6), eabe7953 (2021)
Metadata
Title
Accelerating Simulated Quantum Annealing with GPU and Tensor Cores
Authors
Yi-Hua Chung
Cheng-Jhih Shih
Shih-Hao Hung
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-031-07312-0_9

Premium Partner