Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

05-06-2020 | Issue 8/2020

Water Resources Management 8/2020

Accounting for Inter-Annual and Seasonal Variability in Assessment of Water Supply Stress: Perspectives from a humid region in the USA

Journal:
Water Resources Management > Issue 8/2020
Authors:
Hisham Eldardiry, Emad Habib, David M. Borrok
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Stresses on water systems can be quantitatively assessed through indices that account for water demand relative to water availability, e.g., the Water Supply Stress Index (WaSSI). However, as a result of adopting deterministic supply-driven approaches, limited attention is paid to the potential impacts of climatic variability on quantifying water stresses. The current study aimed to account for the impacts of inter-annual and intra-annual variability in the WaSSI stress index and to provide insights into potential opportunities for better water management practices. The results from our analysis indicate that looking only at average stresses can substantially mask the important impacts of climate variability. Louisiana, as a typical example of humid regions in the USA, is subjected to high levels of stresses (WaSSI exceeds 1.0) with higher inter-annual variability in watersheds where thermoelectric power plants exist and extensive water is used for cooling process. In addition, intra-annual variability in some watersheds shows periodicity in terms of seasonal stress distributions due to variability in surface water supply and water demand. Our analysis indicated that the stress variability grows as the median WaSSI increases but up to a certain threshold level and then the variability decreases for very high stress levels. For the annual and monthly scales, the peak variability, quantified as the width of the 2.5–97.5 stress percentiles, reached 68% for a median annual WaSSI of 1.00 and 100% for a median monthly WaSSI of 1.15, respectively. Various decisions related to water use and management can be driven by such variability, at both annual and intra-annual scales. Hence, these results have important implications for applied water resource studies aiming to formulate water management policies and improve water system sustainability under climate variability.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

Water Resources Management 8/2020 Go to the issue