Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

13. Accuracy and Appropriateness of Numerical Schemes

Author : Tobias Weinzierl

Published in: Principles of Parallel Scientific Computing

Publisher: Springer International Publishing

Abstract

For the accuracy and stability of numerical codes, we have to ensure that a discretisation is consistent and is stable. Both depend on the truncation error, while we distinguish zero- and A-stability. We end up with the notion of convergence according to the Lax Equivalence Theorem, and finally discuss how we can compute the convergence order experimentally.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Footnotes
1
N here is a counter for the time steps. It has nothing to do with the N from “N-body simulations”.
 
2
I call \(\lambda \) the material parameter. Different to flow through a subsurface medium, e.g., our \(\lambda \) is not really a material. But the name material here highlights that it is not a parameter determined by yet another equation but something fixed.
 
3
Some maths books define Lipschitz-continuity “simply” as \(|F(s_1)-F(s_2)| \le C |s_1-s_2|\). In our discussion, we split up this s into \(s=(t,f(t))\) as we are interested in ODEs, and we wobble around with the f(t) part only. The more general definition from math books shows that we also can slightly alter the t argument. The solution will not change too much either. Both definitions focus on the right-hand side of the ODE. As the right side determines the solution, its (continuity) properties carry over to the solution.
 
Metadata
Title
Accuracy and Appropriateness of Numerical Schemes
Author
Tobias Weinzierl
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-76194-3_13

Premium Partner