Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

27-11-2019 | Original Research Paper | Issue 2/2020

Intelligent Service Robotics 2/2020

Accuracy enhancement for the front-end tracking algorithm of RGB-D SLAM

Journal:
Intelligent Service Robotics > Issue 2/2020
Authors:
Fuwen Hu, Jingli Cheng, Yunchang Bao, Yunhua He
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

A robust and accurate simultaneous localization and mapping (SLAM) in working scenarios is an essential competence to perform mobile robotic tasks autonomously. Plenty of research indicates that the extraction of point features from RGB-D data that simultaneously take into account the images and the depth data increases the robustness and precision of the visual odometry method, used either as a self-reliant localization system, or as a front-end in pose-based SLAM. However, due to pure rotation, sudden movements, motion blur, noise and large depth variations, RGB-D SLAM systems often suffer from tracking loss in data association. The front-end tracking process of the ORB-SLAM system requires screening step by step, which is more likely to cause tracking loss. In order to solve the above problems, this work is intended to improve the ORB-SLAM front-end tracking algorithm based on the uniform speed model tracking effective frame and the matching of nearby frame algorithms. Then three datasets selected from TUM datasets with more motion blur are used to further verify the effect of the improved front-end algorithmic architecture. The experimental results suggested that the proposed improved scheme can not only effectively increase the number of tracked frames, but also reduce the amount of computation by about two times under the premise of guaranteeing the path accuracy.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2020

Intelligent Service Robotics 2/2020 Go to the issue