Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

5. Achromatic Diffractive Optical Elements (DOEs) for Broadband Applications

Abstract

The integration of diffractive optical elements (DOEs) into a broadband optical system can often allow for increasing the system’s performance, reducing its size, or its complexity. However, despite considerable efforts to develop different technologies for DOEs, they still remain highly underutilized in broadband imaging system. This is because DOEs that maintain high diffraction efficiencies across the full range of wavelengths, angles of incidence (AOIs), and grating periods required for different optical systems are currently not available. Since the wavelength dependence of the efficiency is fundamentally linked to the dispersion of the phase delay \((\phi (\lambda )\)), this leads to the question of whether the dispersion engineering capabilities of nanocomposites could make such materials an enabling technology for finally unlocking the full potential of DOEs for optical design. In this chapter, I address this question as my first advanced application for nanocomposites. At the same time, my second goal in this chapter is to not restrict myself to one material platform and embodiment of DOEs, but also develop general concepts for how DOEs for broadband systems can be designed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Dispersion-engineered nanocomposites enable achromatic diffractive optical elements. Opt. 6(8), 1031 (2019) D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Dispersion-engineered nanocomposites enable achromatic diffractive optical elements. Opt. 6(8), 1031 (2019)
2.
go back to reference D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Flat optics in high numerical aperture broadband imaging systems. J. Opt. 22(6), 065607 (2020) D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Flat optics in high numerical aperture broadband imaging systems. J. Opt. 22(6), 065607 (2020)
3.
go back to reference D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, General design formalism for highly efficient flat optics for broadband applications. Opt. Exp. 28(5), 6452–6468 (2020) CrossRef D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, General design formalism for highly efficient flat optics for broadband applications. Opt. Exp. 28(5), 6452–6468 (2020) CrossRef
4.
go back to reference T. Ogata, R. Yagi, N. Nakamura, Y. Kuwahara, S. Kurihara, Modulation of polymer refractive indices with diamond nanoparticles for metal-free multilayer film mirrors. ACS Appl. Mater. Interfaces 4(8), 3769–72 (2012) CrossRef T. Ogata, R. Yagi, N. Nakamura, Y. Kuwahara, S. Kurihara, Modulation of polymer refractive indices with diamond nanoparticles for metal-free multilayer film mirrors. ACS Appl. Mater. Interfaces 4(8), 3769–72 (2012) CrossRef
5.
go back to reference H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films. Appl. Surface Sci. 258(22), 8564–8569 (2012) CrossRef H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films. Appl. Surface Sci. 258(22), 8564–8569 (2012) CrossRef
6.
go back to reference E. Ōsawa, Recent progress and perspectives in single-digit nanodiamond. Diamond Related Mater. 16(12), 2018–2022 (2007) CrossRef E. Ōsawa, Recent progress and perspectives in single-digit nanodiamond. Diamond Related Mater. 16(12), 2018–2022 (2007) CrossRef
7.
go back to reference Z. Chen, Pixelligent zirconia nano-crystals for OLED applications, in white paper (2014) Z. Chen, Pixelligent zirconia nano-crystals for OLED applications, in white paper (2014)
8.
go back to reference D. Russel, A. Stabell, Scaling-up pixelligent nanocrystal dispersions, in White Paper (2016) D. Russel, A. Stabell, Scaling-up pixelligent nanocrystal dispersions, in White Paper (2016)
9.
go back to reference Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014) Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014)
10.
go back to reference T. Stone, N. George, Hybrid diffractive-refractive lenses and achromats. Appl. Opt. 27(14), 2960–71 (1988) CrossRef T. Stone, N. George, Hybrid diffractive-refractive lenses and achromats. Appl. Opt. 27(14), 2960–71 (1988) CrossRef
11.
go back to reference P. Lalanne, Waveguiding in blazed-binary diffractive elements. J. Opt. Soc. Am. A 16(10), 2517 (1999) P. Lalanne, Waveguiding in blazed-binary diffractive elements. J. Opt. Soc. Am. A 16(10), 2517 (1999)
12.
go back to reference P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23(14), 1081 (1998) P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23(14), 1081 (1998)
13.
go back to reference P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16(5), 1143–1156 (1999) CrossRef P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16(5), 1143–1156 (1999) CrossRef
14.
go back to reference P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives. Laser Photon. Rev. 11(3), 1600295 (2017) P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives. Laser Photon. Rev. 11(3), 1600295 (2017)
15.
go back to reference P. Lalanne, J.P. Hugonin, P. Chavel, Optical properties of deep lamellar Gratings: a coupled Bloch-mode insight. J. Lightwave Technol. 24(6), 2442–2449 (2006) CrossRef P. Lalanne, J.P. Hugonin, P. Chavel, Optical properties of deep lamellar Gratings: a coupled Bloch-mode insight. J. Lightwave Technol. 24(6), 2442–2449 (2006) CrossRef
16.
go back to reference M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, Wide-field-angle behavior of blazed-binary gratings in the resonance domain. Opt. Lett. 25(23), 1690 (2000) M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, Wide-field-angle behavior of blazed-binary gratings in the resonance domain. Opt. Lett. 25(23), 1690 (2000)
17.
go back to reference C. Ribot, M.-S.L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, Broadband and efficient diffraction. Adv. Opt. Mater. 1(7), 489–493 (2013) CrossRef C. Ribot, M.-S.L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, Broadband and efficient diffraction. Adv. Opt. Mater. 1(7), 489–493 (2013) CrossRef
18.
go back to reference C. Sauvan, P. Lalanne, M.-S.L. Lee, Broadband blazing with artificial dielectrics. Opt. Lett. 29(14), 1593 (2004) C. Sauvan, P. Lalanne, M.-S.L. Lee, Broadband blazing with artificial dielectrics. Opt. Lett. 29(14), 1593 (2004)
19.
go back to reference C.A. Palmer, E.G. Loewen, Diffraction Grating Handbook (Newport Corporation New York, 2005) C.A. Palmer, E.G. Loewen, Diffraction Grating Handbook (Newport Corporation New York, 2005)
20.
go back to reference G.J. Swanson, Binary Optics Technology: The Theory and Design of Multi-level Diffractive Optical Elements (Report, Lincoln Laboratory Massachusetts Institute of Technology, 1989) G.J. Swanson, Binary Optics Technology: The Theory and Design of Multi-level Diffractive Optical Elements (Report, Lincoln Laboratory Massachusetts Institute of Technology, 1989)
21.
go back to reference S. Banerji, M. Meem, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R. Menon, Imaging with flat optics: metalenses or diffractive lenses? Opt. 6(6), 805 (2019) S. Banerji, M. Meem, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R. Menon, Imaging with flat optics: metalenses or diffractive lenses? Opt. 6(6), 805 (2019)
22.
go back to reference G. Kim, J.A. Dominguez-Caballero, R. Menon, Design and analysis of multi-wavelength diffractive optics. Opt. Exp. 20(3), 2814–23 (2012) CrossRef G. Kim, J.A. Dominguez-Caballero, R. Menon, Design and analysis of multi-wavelength diffractive optics. Opt. Exp. 20(3), 2814–23 (2012) CrossRef
23.
go back to reference N. Mohammad, M. Meem, X. Wan, R. Menon, Full-color, large area, transmissive holograms enabled by multi-level diffractive optics. Sci. Rep. 7(1), 5789 (2017) N. Mohammad, M. Meem, X. Wan, R. Menon, Full-color, large area, transmissive holograms enabled by multi-level diffractive optics. Sci. Rep. 7(1), 5789 (2017)
24.
go back to reference P. Wang, N. Mohammad, R. Menon, Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 6, 21545 (2016) P. Wang, N. Mohammad, R. Menon, Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 6, 21545 (2016)
25.
go back to reference H. Gross, W. Singer, M. Totzeck, F. Blechinger, B. Achtner, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Berlin, 2005) H. Gross, W. Singer, M. Totzeck, F. Blechinger, B. Achtner, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Berlin, 2005)
26.
go back to reference A. Small, Spherical aberration, coma, and the Abbe sine condition for physicists who don’t design lenses. Am. J. Phys. 86(7), 487–494 (2018) CrossRef A. Small, Spherical aberration, coma, and the Abbe sine condition for physicists who don’t design lenses. Am. J. Phys. 86(7), 487–494 (2018) CrossRef
27.
go back to reference M. Decker, W.T. Chen, T. Nobis, A.Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, J. Petschulat, Imaging performance of polarization-insensitive metalenses. ACS Photon. (2019) M. Decker, W.T. Chen, T. Nobis, A.Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, J. Petschulat, Imaging performance of polarization-insensitive metalenses. ACS Photon. (2019)
28.
go back to reference H. Liang, A. Martins, B.-H.V. Borges, J. Zhou, E.R. Martins, J. Li, T.F. Krauss, High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica 6(12), 1461–1470 (2019) CrossRef H. Liang, A. Martins, B.-H.V. Borges, J. Zhou, E.R. Martins, J. Li, T.F. Krauss, High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica 6(12), 1461–1470 (2019) CrossRef
29.
go back to reference W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso, A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13(3), 220–226 (2018) CrossRef W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso, A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13(3), 220–226 (2018) CrossRef
30.
go back to reference W.T. Chen, A.Y. Zhu, J. Sisler, Z. Bharwani, F. Capasso, A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 10(1), 355 (2019) W.T. Chen, A.Y. Zhu, J. Sisler, Z. Bharwani, F. Capasso, A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 10(1), 355 (2019)
31.
go back to reference W.T. Chen, A.Y. Zhu, J. Sisler, Y.W. Huang, K.M.A. Yousef, E. Lee, C.W. Qiu, F. Capasso, Broadband achromatic metasurface-refractive optics. Nano Lett. 18(12), 7801–7808 (2018) CrossRef W.T. Chen, A.Y. Zhu, J. Sisler, Y.W. Huang, K.M.A. Yousef, E. Lee, C.W. Qiu, F. Capasso, Broadband achromatic metasurface-refractive optics. Nano Lett. 18(12), 7801–7808 (2018) CrossRef
32.
go back to reference M. Khorasaninejad, Z. Shi, A.Y. Zhu, W.T. Chen, V. Sanjeev, A. Zaidi, F. Capasso, Achromatic Metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17(3), 1819–1824 (2017) CrossRef M. Khorasaninejad, Z. Shi, A.Y. Zhu, W.T. Chen, V. Sanjeev, A. Zaidi, F. Capasso, Achromatic Metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17(3), 1819–1824 (2017) CrossRef
33.
go back to reference S. Wang et al., A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13(3), 227–232 (2018) CrossRef S. Wang et al., A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13(3), 227–232 (2018) CrossRef
34.
go back to reference J.A. Davison, M.J. Simpson, History and development of the apodized diffractive intraocular lens. J. Cataract Refractive Surgery 32(5), 849–58 (2006) CrossRef J.A. Davison, M.J. Simpson, History and development of the apodized diffractive intraocular lens. J. Cataract Refractive Surgery 32(5), 849–58 (2006) CrossRef
35.
go back to reference A.A. Kazemi, B. Kress, T. Starner, B.C. Kress, S. Thibault, A review of head-mounted displays (HMD) technologies and applications for consumer electronics, in Proceedings SPIE 8720, Photonic Applications for Aerospace, Commercial, and Harsh Environments IV (2013), p. 87200A A.A. Kazemi, B. Kress, T. Starner, B.C. Kress, S. Thibault, A review of head-mounted displays (HMD) technologies and applications for consumer electronics, in Proceedings SPIE 8720, Photonic Applications for Aerospace, Commercial, and Harsh Environments IV (2013), p. 87200A
36.
go back to reference G.I. Greisukh, E.G. Ezhov, A.V. Kalashnikov, S.A. Stepanov, Diffractive-refractive correction units for plastic compact zoom lenses. Appl. Opt. 51(20), 4597–604 (2012) CrossRef G.I. Greisukh, E.G. Ezhov, A.V. Kalashnikov, S.A. Stepanov, Diffractive-refractive correction units for plastic compact zoom lenses. Appl. Opt. 51(20), 4597–604 (2012) CrossRef
37.
go back to reference G.I. Greisukh, E.G. Ezhov, I.A. Levin, S.A. Stepanov, Design of achromatic and apochromatic plastic micro-objectives. Appl. Opt. 49(23), 4379–84 (2010) CrossRef G.I. Greisukh, E.G. Ezhov, I.A. Levin, S.A. Stepanov, Design of achromatic and apochromatic plastic micro-objectives. Appl. Opt. 49(23), 4379–84 (2010) CrossRef
38.
go back to reference T. Nakai, H. Ogawa, Research on multi-layer diffractive optical elements and their application to camera lenses, in Diffractive Optics and Micro-Optics. Optical Society of America, 2002, DMA2 T. Nakai, H. Ogawa, Research on multi-layer diffractive optical elements and their application to camera lenses, in Diffractive Optics and Micro-Optics. Optical Society of America, 2002, DMA2
39.
go back to reference G.I. Greisukh, E.G. Ezhov, S.A. Stepanov, Diffractive-refractive hybrid corrector for achroand apochromatic corrections of optical systems. Appl. Opt. 45(24), 6137 (2006) G.I. Greisukh, E.G. Ezhov, S.A. Stepanov, Diffractive-refractive hybrid corrector for achroand apochromatic corrections of optical systems. Appl. Opt. 45(24), 6137 (2006)
40.
go back to reference J.M. Trapp, T.G. Jabbour, G. Kelch, T. Pertsch, M. Decker, Hybrid refractive holographic single vision spectacle lenses. J. Eur. Opt. Soc.-Rapid Publ. 15(1), 14 (2019) J.M. Trapp, T.G. Jabbour, G. Kelch, T. Pertsch, M. Decker, Hybrid refractive holographic single vision spectacle lenses. J. Eur. Opt. Soc.-Rapid Publ. 15(1), 14 (2019)
41.
go back to reference S. Schmidt, S. Thiele, A. Herkommer, A. Tunnermann, H. Gross, Rotationally symmetric formulation of the wave propagation method-application to the straylight analysis of diffractive lenses. Opt. Lett. 42(8), 1612–1615 (2017) CrossRef S. Schmidt, S. Thiele, A. Herkommer, A. Tunnermann, H. Gross, Rotationally symmetric formulation of the wave propagation method-application to the straylight analysis of diffractive lenses. Opt. Lett. 42(8), 1612–1615 (2017) CrossRef
42.
go back to reference R. Kingslake, Lenses in Photography: The Practical Guide to Optics for Photographers (Barnes, 1963) R. Kingslake, Lenses in Photography: The Practical Guide to Optics for Photographers (Barnes, 1963)
43.
go back to reference N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Physica Polonica-Ser. General Phys. 116(4), 585 (2009) N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Physica Polonica-Ser. General Phys. 116(4), 585 (2009)
44.
go back to reference Schott, Optical Glass 2020. Technical Report Schott AG (2020) Schott, Optical Glass 2020. Technical Report Schott AG (2020)
45.
go back to reference P. Hartmann, Optical glass: deviation of relative partial dispersion from the normal line-need for a common definition. Opt. Eng. 54(10), 105112 (2015) P. Hartmann, Optical glass: deviation of relative partial dispersion from the normal line-need for a common definition. Opt. Eng. 54(10), 105112 (2015)
46.
go back to reference O. Sandfuchs, R. Brunner, D. Pätz, S. Sinzinger, J. Ruoff, Rigorous analysis of shadowing effects in blazed transmission gratings. Opt. Lett. 31(24), 3638 (2006) O. Sandfuchs, R. Brunner, D. Pätz, S. Sinzinger, J. Ruoff, Rigorous analysis of shadowing effects in blazed transmission gratings. Opt. Lett. 31(24), 3638 (2006)
47.
go back to reference M.T. Gale, Replication techniques for diffractive optical elements. Microelectron. Eng. 34(3–4), 321–339 (1997) CrossRef M.T. Gale, Replication techniques for diffractive optical elements. Microelectron. Eng. 34(3–4), 321–339 (1997) CrossRef
48.
go back to reference M. Decker, I. Staude, Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt. 18(10), 103001 (2016) M. Decker, I. Staude, Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt. 18(10), 103001 (2016)
49.
go back to reference M. Decker, I. Staude, M. Falkner, J. Dominguez, D.N. Neshev, I. Brener, T. Pertsch, Y.S. Kivshar, High-efficiency dielectric Huygens’ surfaces. Advanced Optical Materials 3(6), 813–820 (2015) CrossRef M. Decker, I. Staude, M. Falkner, J. Dominguez, D.N. Neshev, I. Brener, T. Pertsch, Y.S. Kivshar, High-efficiency dielectric Huygens’ surfaces. Advanced Optical Materials 3(6), 813–820 (2015) CrossRef
50.
go back to reference S.J. Byrnes, A. Lenef, F. Aieta, F. Capasso, Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt. Exp. 24(5), 5110–5124 (2016) CrossRef S.J. Byrnes, A. Lenef, F. Aieta, F. Capasso, Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt. Exp. 24(5), 5110–5124 (2016) CrossRef
51.
go back to reference P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, R. Devlin, Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Opt. 4(1), 139 (2017) P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, R. Devlin, Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Opt. 4(1), 139 (2017)
52.
go back to reference B. Groever, W.T. Chen, F. Capasso, Meta-lens doublet in the visible region. Nano Lett. 17(8), 4902–4907 (2017) CrossRef B. Groever, W.T. Chen, F. Capasso, Meta-lens doublet in the visible region. Nano Lett. 17(8), 4902–4907 (2017) CrossRef
53.
go back to reference M. Khorasaninejad, F. Capasso, Metalenses: Versatile multifunctional photonic components. Sci. 358(6367) (2017) M. Khorasaninejad, F. Capasso, Metalenses: Versatile multifunctional photonic components. Sci. 358(6367) (2017)
54.
go back to reference M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352(6290), 1190–4 (2016) CrossRef M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352(6290), 1190–4 (2016) CrossRef
55.
go back to reference M. Khorasaninejad, A.Y. Zhu, C. Roques-Carmes, W.T. Chen, J. Oh, I. Mishra, R.C. Devlin, F. Capasso, Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16(11), 7229–7234 (2016) CrossRef M. Khorasaninejad, A.Y. Zhu, C. Roques-Carmes, W.T. Chen, J. Oh, I. Mishra, R.C. Devlin, F. Capasso, Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16(11), 7229–7234 (2016) CrossRef
56.
go back to reference R. Sawant, P. Bhumkar, A.Y. Zhu, P. Ni, F. Capasso, P. Genevet, Mitigating chromatic dispersion with hybrid optical metasurfaces. Adv. Mater. 31(3), e1805555 (2019) R. Sawant, P. Bhumkar, A.Y. Zhu, P. Ni, F. Capasso, P. Genevet, Mitigating chromatic dispersion with hybrid optical metasurfaces. Adv. Mater. 31(3), e1805555 (2019)
57.
go back to reference A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4(2), eaap9957 (2018) A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4(2), eaap9957 (2018)
58.
go back to reference N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333–7 (2011) CrossRef N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333–7 (2011) CrossRef
59.
go back to reference A.Y. Zhu, W.-T. Chen, M. Khorasaninejad, J. Oh, A. Zaidi, I. Mishra, R.C. Devlin, F. Capasso, Ultra-compact visible chiral spectrometer with meta-lenses. APL Photon. 2(3), 036103 (2017) A.Y. Zhu, W.-T. Chen, M. Khorasaninejad, J. Oh, A. Zaidi, I. Mishra, R.C. Devlin, F. Capasso, Ultra-compact visible chiral spectrometer with meta-lenses. APL Photon. 2(3), 036103 (2017)
60.
go back to reference A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Optically resonant dielectric nanostructures. Sci. 354(6314), aag2472 (2016) A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Optically resonant dielectric nanostructures. Sci. 354(6314), aag2472 (2016)
61.
go back to reference D. Werdehausen, M. Decker, Diffraktives optisches Element, Verfahren zum Entwerfen einer effizienzachromatisierten diffraktiven Struktur und Verfahren zur Herstellung eines effizienzachromatisierten diffraktiven Elementes. German Patent Application DE102019109944.7 (2019) D. Werdehausen, M. Decker, Diffraktives optisches Element, Verfahren zum Entwerfen einer effizienzachromatisierten diffraktiven Struktur und Verfahren zur Herstellung eines effizienzachromatisierten diffraktiven Elementes. German Patent Application DE102019109944.7 (2019)
62.
go back to reference D. Sell, J. Yang, S. Doshay, R. Yang, J.A. Fan, Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett. 17(6), 3752–3757 (2017) D. Sell, J. Yang, S. Doshay, R. Yang, J.A. Fan, Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett. 17(6), 3752–3757 (2017)
Metadata
Title
Achromatic Diffractive Optical Elements (DOEs) for Broadband Applications
Author
Daniel Werdehausen
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-75684-0_5

Premium Partners