Skip to main content
Top
Published in: Journal of Nanoparticle Research 1/2023

01-01-2023 | Research Paper

Acid-responsive drug-loaded copper phosphate nanoparticles for tumor cell therapy through synergistic apoptosis and ferroptosis strategy

Authors: Sheng Zhao, Liang He, Yihao Sun, Ting Xu, Chunmei Chen, Yi Ouyang, Yan Chen, Yixin Tan, Benqing Zhou, Hui Liu

Published in: Journal of Nanoparticle Research | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Synergistic apoptosis and ferroptosis strategy is quite promising for tumor treatment. Herein, a kind of polyacrylic acid-stabilized, carboxymethyl chitosan-coated, doxorubicin (DOX)-loaded copper phosphate nanoparticles (NPs) were prepared by a simple method for synergistic apoptosis and ferroptosis against tumor cells. The finally formed PAA-Cu3(PO4)2-DOX-CMCS (PCPDC) NPs displayed suitable hydrodynamic size (208.7 nm) and surface charge. When uptaken by tumor cells, they were degraded under acidic circumstances, releasing DOX and Cu2+ ions. The released Cu2+ ions reacted with glutathione (GSH) to produce Cu+ ions and deplete GSH. Through Cu+ ions-mediated Fenton-like reaction, H2O2 can be converted to hydroxyl radical to produce lipid hydroperoxides. Furthermore, the depleted GSH down-regulated the expression of glutathione peroxidase 4 (GPX4) protein, promoting the accumulation of lipid hydroperoxides to enhance ferroptosis. The released DOX can effectively induce apoptosis in tumor cells. These developed Cu3(PO4)2-based nanomaterials can kill tumor cells effectively through the synergistic apoptosis and ferroptosis strategy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell 149:1060–1072CrossRef Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell 149:1060–1072CrossRef
2.
go back to reference Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascon S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell 171:273–285CrossRef Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascon S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell 171:273–285CrossRef
3.
go back to reference Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X (2018) Emerging strategies of cancer therapy based on ferroptosis[J]. Adv Mater 30:1704007CrossRef Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X (2018) Emerging strategies of cancer therapy based on ferroptosis[J]. Adv Mater 30:1704007CrossRef
4.
go back to reference Liang C, Zhang X, Yang M, Dong X (2019) Recent progress in ferroptosis inducers for cancer therapy[J]. Adv Mater 31:1904197CrossRef Liang C, Zhang X, Yang M, Dong X (2019) Recent progress in ferroptosis inducers for cancer therapy[J]. Adv Mater 31:1904197CrossRef
5.
go back to reference Yang Y, Tian Q, Wu S, Li Y, Yang K, Yan Y, Shang L, Li A, Zhang L (2021) Blue light-triggered Fe(2+)-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy[J]. Biomaterials 271:120739CrossRef Yang Y, Tian Q, Wu S, Li Y, Yang K, Yan Y, Shang L, Li A, Zhang L (2021) Blue light-triggered Fe(2+)-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy[J]. Biomaterials 271:120739CrossRef
6.
go back to reference Wang P, Xiao M, Pei H, Xing H, Luo S-H, Tsung C-K, Li L (2021) Biomineralized DNA nanospheres by metal organic framework for enhanced chemodynamic therapy[J]. Chem Eng J 415:129036CrossRef Wang P, Xiao M, Pei H, Xing H, Luo S-H, Tsung C-K, Li L (2021) Biomineralized DNA nanospheres by metal organic framework for enhanced chemodynamic therapy[J]. Chem Eng J 415:129036CrossRef
7.
go back to reference Yu B, Choi B, Li W, Kim DH (2020) Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy[J]. Nat Commun 11:3637CrossRef Yu B, Choi B, Li W, Kim DH (2020) Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy[J]. Nat Commun 11:3637CrossRef
8.
go back to reference Chen Z, Li Z, Li C, Huang H, Ren Y, Li Z, Hu Y, Guo W (2022) Manganese-containing polydopamine nanoparticles as theranostic agents for magnetic resonance imaging and photothermal/chemodynamic combined ferroptosis therapy treating gastric cancer[J]. Drug Deliv 29:1201–1211CrossRef Chen Z, Li Z, Li C, Huang H, Ren Y, Li Z, Hu Y, Guo W (2022) Manganese-containing polydopamine nanoparticles as theranostic agents for magnetic resonance imaging and photothermal/chemodynamic combined ferroptosis therapy treating gastric cancer[J]. Drug Deliv 29:1201–1211CrossRef
9.
go back to reference Liang K, Li Z, Luo Y, Zhang Q, Yin F, Xu L, Chen H, Wang H (2020) Intelligent nanocomposites with intrinsic blood-brain-barrier crossing ability designed for highly specific MR imaging and sonodynamic therapy of glioblastoma[J]. Small 16:1906985CrossRef Liang K, Li Z, Luo Y, Zhang Q, Yin F, Xu L, Chen H, Wang H (2020) Intelligent nanocomposites with intrinsic blood-brain-barrier crossing ability designed for highly specific MR imaging and sonodynamic therapy of glioblastoma[J]. Small 16:1906985CrossRef
10.
go back to reference Fu J, Li T, Yang Y, Jiang L, Wang W, Fu L, Zhu Y, Hao Y (2021) Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors[J]. Biomaterials 268:120537CrossRef Fu J, Li T, Yang Y, Jiang L, Wang W, Fu L, Zhu Y, Hao Y (2021) Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors[J]. Biomaterials 268:120537CrossRef
11.
go back to reference Xue C, Li M, Liu C, Li Y, Fei Y, Hu Y, Cai K, Zhao Y, Luo Z (2021) NIR-actuated remote activation of ferroptosis in target tumor cells through a photothermally responsive iron-chelated biopolymer nanoplatform[J]. Angew Chem Int Ed 60:8938–8947CrossRef Xue C, Li M, Liu C, Li Y, Fei Y, Hu Y, Cai K, Zhao Y, Luo Z (2021) NIR-actuated remote activation of ferroptosis in target tumor cells through a photothermally responsive iron-chelated biopolymer nanoplatform[J]. Angew Chem Int Ed 60:8938–8947CrossRef
12.
go back to reference He T, Luo Y, Zhang Q, Men Z, Su T, Fan L, Chen H, Shen T (2021) Hyalase-mediated cascade degradation of a matrix barrier and immune cell penetration by a photothermal microneedle for efficient anticancer therapy[J]. ACS Appl Mater Interfaces 13:26790–26799CrossRef He T, Luo Y, Zhang Q, Men Z, Su T, Fan L, Chen H, Shen T (2021) Hyalase-mediated cascade degradation of a matrix barrier and immune cell penetration by a photothermal microneedle for efficient anticancer therapy[J]. ACS Appl Mater Interfaces 13:26790–26799CrossRef
13.
go back to reference Li X, Sun H, Li H, Hu C, Luo Y, Shi X, Pich A (2021) Multi-responsive biodegradable cationic nanogels for highly efficient treatment of tumors[J]. Adv Funct Mater 31:2100227CrossRef Li X, Sun H, Li H, Hu C, Luo Y, Shi X, Pich A (2021) Multi-responsive biodegradable cationic nanogels for highly efficient treatment of tumors[J]. Adv Funct Mater 31:2100227CrossRef
14.
go back to reference Li J, Yu X, Jiang Y, He S, Zhang Y, Luo Y, Pu K (2021) Second near-infrared photothermal semiconducting polymer nanoadjuvant for enhanced cancer immunotherapy[J]. Adv Mater 33:2003458CrossRef Li J, Yu X, Jiang Y, He S, Zhang Y, Luo Y, Pu K (2021) Second near-infrared photothermal semiconducting polymer nanoadjuvant for enhanced cancer immunotherapy[J]. Adv Mater 33:2003458CrossRef
15.
go back to reference Yang Z, Luo Y, Hu Y, Liang K, He G, Chen Q, Wang Q, Chen H (2020) Photothermo-promoted nanocatalysis combined with H2S-mediated respiration inhibition for efficient cancer therapy[J]. Adv Funct Mater 31:2007991CrossRef Yang Z, Luo Y, Hu Y, Liang K, He G, Chen Q, Wang Q, Chen H (2020) Photothermo-promoted nanocatalysis combined with H2S-mediated respiration inhibition for efficient cancer therapy[J]. Adv Funct Mater 31:2007991CrossRef
16.
go back to reference Feng W, Han X, Wang R, Gao X, Hu P, Yue W, Chen Y, Shi J (2019) Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows[J]. Adv Mater 31:1805919 Feng W, Han X, Wang R, Gao X, Hu P, Yue W, Chen Y, Shi J (2019) Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows[J]. Adv Mater 31:1805919
17.
go back to reference Yuan P, Dou G, Liu T, Guo X, Bai Y, Chu D, Liu S, Chen X, Jin Y (2021) On-demand manipulation of tumorigenic microenvironments by nano-modulator for synergistic tumor therapy[J]. Biomaterials 275:120956CrossRef Yuan P, Dou G, Liu T, Guo X, Bai Y, Chu D, Liu S, Chen X, Jin Y (2021) On-demand manipulation of tumorigenic microenvironments by nano-modulator for synergistic tumor therapy[J]. Biomaterials 275:120956CrossRef
18.
go back to reference Ma P, Xiao H, Yu C, Liu J, Cheng Z, Song H, Zhang X, Li C, Wang J, Gu Z, Lin J (2017) Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species[J]. Nano Lett 17:928–937CrossRef Ma P, Xiao H, Yu C, Liu J, Cheng Z, Song H, Zhang X, Li C, Wang J, Gu Z, Lin J (2017) Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species[J]. Nano Lett 17:928–937CrossRef
19.
go back to reference Wang T, Zhang H, Liu H, Yuan Q, Ren F, Han Y, Sun Q, Li Z, Gao M (2019) Boosting H2O2-guided chemodynamic therapy of cancer by enhancing reaction kinetics through versatile biomimetic Fenton nanocatalysts and the second near-infrared light irradiation[J]. Adv Funct Mater 30:1906128CrossRef Wang T, Zhang H, Liu H, Yuan Q, Ren F, Han Y, Sun Q, Li Z, Gao M (2019) Boosting H2O2-guided chemodynamic therapy of cancer by enhancing reaction kinetics through versatile biomimetic Fenton nanocatalysts and the second near-infrared light irradiation[J]. Adv Funct Mater 30:1906128CrossRef
20.
go back to reference Fu LH, Wan Y, Qi C, He J, Li C, Yang C, Xu H, Lin J, Huang P (2021) Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy[J]. Adv Mater 33:2006892CrossRef Fu LH, Wan Y, Qi C, He J, Li C, Yang C, Xu H, Lin J, Huang P (2021) Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy[J]. Adv Mater 33:2006892CrossRef
21.
go back to reference Zhang C, Yan L, Wang X, Dong X, Zhou R, Gu Z, Zhao Y (2019) Tumor microenvironment-responsive Cu2(OH)PO4 nanocrystals for selective and controllable radiosentization via the X-ray-triggered Fenton-like reaction[J]. Nano Lett 19:1749–1757CrossRef Zhang C, Yan L, Wang X, Dong X, Zhou R, Gu Z, Zhao Y (2019) Tumor microenvironment-responsive Cu2(OH)PO4 nanocrystals for selective and controllable radiosentization via the X-ray-triggered Fenton-like reaction[J]. Nano Lett 19:1749–1757CrossRef
22.
go back to reference Zhang Q, Wang J, Xu L, Lu SY, Yang H, Duan Y, Yang Q, Qiu M, Chen C, Zhao S, Liu X, Liu H (2021) PEGylated copper(II)-chelated polydopamine nanocomposites for photothermal-enhanced chemodynamic therapy against tumor cells[J]. J Appl Polym Sci 138:51172CrossRef Zhang Q, Wang J, Xu L, Lu SY, Yang H, Duan Y, Yang Q, Qiu M, Chen C, Zhao S, Liu X, Liu H (2021) PEGylated copper(II)-chelated polydopamine nanocomposites for photothermal-enhanced chemodynamic therapy against tumor cells[J]. J Appl Polym Sci 138:51172CrossRef
23.
go back to reference Li X, Yuan HJ, Tian XM, Tang J, Liu LF, Liu FY (2021) Biocompatible copper sulfide-based nanocomposites for artery interventional chemo-photothermal therapy of orthotropic hepatocellular carcinoma[J]. Mater Today Bio 12:100128CrossRef Li X, Yuan HJ, Tian XM, Tang J, Liu LF, Liu FY (2021) Biocompatible copper sulfide-based nanocomposites for artery interventional chemo-photothermal therapy of orthotropic hepatocellular carcinoma[J]. Mater Today Bio 12:100128CrossRef
24.
go back to reference Zhou Z, Liu Y, Zhang M, Li C, Yang R, Li J, Qian C, Sun M (2019) Size switchable nanoclusters fueled by extracellular ATP for promoting deep penetration and MRI-guided tumor photothermal therapy[J]. Adv Funct Mater 29:1904144CrossRef Zhou Z, Liu Y, Zhang M, Li C, Yang R, Li J, Qian C, Sun M (2019) Size switchable nanoclusters fueled by extracellular ATP for promoting deep penetration and MRI-guided tumor photothermal therapy[J]. Adv Funct Mater 29:1904144CrossRef
25.
go back to reference Li SL, Jiang P, Hua S, Jiang FL, Liu Y (2021) Near-infrared Zn-doped Cu2S quantum dots: an ultrasmall theranostic agent for tumor cell imaging and chemodynamic therapy[J]. Nanoscale 13:3673–3685CrossRef Li SL, Jiang P, Hua S, Jiang FL, Liu Y (2021) Near-infrared Zn-doped Cu2S quantum dots: an ultrasmall theranostic agent for tumor cell imaging and chemodynamic therapy[J]. Nanoscale 13:3673–3685CrossRef
26.
go back to reference Lin LS, Huang T, Song J, Ou XY, Wang Z, Deng H, Tian R, Liu Y, Wang JF, Liu Y, Yu G, Zhou Z, Wang S, Niu G, Yang HH, Chen X (2019) Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy[J]. J Am Chem Soc 141:9937–9945CrossRef Lin LS, Huang T, Song J, Ou XY, Wang Z, Deng H, Tian R, Liu Y, Wang JF, Liu Y, Yu G, Zhou Z, Wang S, Niu G, Yang HH, Chen X (2019) Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy[J]. J Am Chem Soc 141:9937–9945CrossRef
27.
go back to reference Liu B, Bian Y, Liang S, Yuan M, Dong S, He F, Gai S, Yang P, Cheng Z, Lin J (2021) One-step integration of tumor microenvironment-responsive calcium and copper peroxides nanocomposite for enhanced chemodynamic/ion-interference therapy[J]. ACS Nano 16:617–630CrossRef Liu B, Bian Y, Liang S, Yuan M, Dong S, He F, Gai S, Yang P, Cheng Z, Lin J (2021) One-step integration of tumor microenvironment-responsive calcium and copper peroxides nanocomposite for enhanced chemodynamic/ion-interference therapy[J]. ACS Nano 16:617–630CrossRef
28.
go back to reference Liu Y, Wu J, Jin Y, Zhen W, Wang Y, Liu J, Jin L, Zhang S, Zhao Y, Song S, Yang Y, Zhang H (2019) Copper(I) phosphide nanocrystals for in situ self-generation magnetic resonance imaging-guided photothermal-enhanced chemodynamic synergetic therapy resisting deep-seated tumor[J]. Adv Funct Mater 29:1904678CrossRef Liu Y, Wu J, Jin Y, Zhen W, Wang Y, Liu J, Jin L, Zhang S, Zhao Y, Song S, Yang Y, Zhang H (2019) Copper(I) phosphide nanocrystals for in situ self-generation magnetic resonance imaging-guided photothermal-enhanced chemodynamic synergetic therapy resisting deep-seated tumor[J]. Adv Funct Mater 29:1904678CrossRef
29.
go back to reference Nie N, Liu Y, Li B, Hua Z, Liu J, Liu J, Wang W (2021) Amplified oxidative stress therapy by a degradable copper phosphate nanozyme coated by the in situ polymerization of PEGDA[J]. J Mat Chem B 9:8094–8108CrossRef Nie N, Liu Y, Li B, Hua Z, Liu J, Liu J, Wang W (2021) Amplified oxidative stress therapy by a degradable copper phosphate nanozyme coated by the in situ polymerization of PEGDA[J]. J Mat Chem B 9:8094–8108CrossRef
30.
go back to reference Wang L, Xu Y, Liu C, Si W, Wang W, Zhang Y, Zhong L, Dong X, Zhao Y (2022) Copper-doped MOF-based nanocomposite for GSH depleted chemo/photothermal/chemodynamic combination therapy[J]. Chem Eng J 438:135567CrossRef Wang L, Xu Y, Liu C, Si W, Wang W, Zhang Y, Zhong L, Dong X, Zhao Y (2022) Copper-doped MOF-based nanocomposite for GSH depleted chemo/photothermal/chemodynamic combination therapy[J]. Chem Eng J 438:135567CrossRef
31.
go back to reference Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4[J]. Cell 156:317–331CrossRef Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4[J]. Cell 156:317–331CrossRef
32.
go back to reference Tian H, Zhang M, Jin G, Jiang Y, Luan Y (2021) Cu-MOF chemodynamic nanoplatform via modulating glutathione and H2O2 in tumor microenvironment for amplified cancer therapy[J]. J Colloid Interface Sci 587:358–366CrossRef Tian H, Zhang M, Jin G, Jiang Y, Luan Y (2021) Cu-MOF chemodynamic nanoplatform via modulating glutathione and H2O2 in tumor microenvironment for amplified cancer therapy[J]. J Colloid Interface Sci 587:358–366CrossRef
33.
go back to reference Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L (2019) Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy[J]. J Am Chem Soc 141:849–857CrossRef Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L (2019) Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy[J]. J Am Chem Soc 141:849–857CrossRef
34.
go back to reference LGDDYDYYLXWOZBYaW Lu (2015) Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles[J]. ACS Nano 8:5670–5681 LGDDYDYYLXWOZBYaW Lu (2015) Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles[J]. ACS Nano 8:5670–5681
35.
go back to reference Wang D, Dong H, Li M, Cao Y, Yang F, Zhang K, Dai W, Wang C, Zhang X (2018) Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma[J]. ACS Nano 12:5241–5252CrossRef Wang D, Dong H, Li M, Cao Y, Yang F, Zhang K, Dai W, Wang C, Zhang X (2018) Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma[J]. ACS Nano 12:5241–5252CrossRef
36.
go back to reference Fang Y, Vadlamudi M, Huang Y, Guo X (2019) Lipid-coated, pH-sensitive magnesium phosphate particles for intracellular protein delivery[J]. Pharm Res 36:81CrossRef Fang Y, Vadlamudi M, Huang Y, Guo X (2019) Lipid-coated, pH-sensitive magnesium phosphate particles for intracellular protein delivery[J]. Pharm Res 36:81CrossRef
37.
go back to reference Hosseinzadeh R, Khorsandi K (2019) Photodynamic effect of Zirconium phosphate biocompatible nano-bilayers containing methylene blue on cancer and normal cells[J]. Sci Rep 9:14899CrossRef Hosseinzadeh R, Khorsandi K (2019) Photodynamic effect of Zirconium phosphate biocompatible nano-bilayers containing methylene blue on cancer and normal cells[J]. Sci Rep 9:14899CrossRef
38.
go back to reference Hou L, Tian C, Yan Y, Zhang L, Zhang H, Zhang Z (2020) Manganese-based nanoactivator optimizes cancer immunotherapy via enhancing innate immunity[J]. ACS Nano 14:3927–3940CrossRef Hou L, Tian C, Yan Y, Zhang L, Zhang H, Zhang Z (2020) Manganese-based nanoactivator optimizes cancer immunotherapy via enhancing innate immunity[J]. ACS Nano 14:3927–3940CrossRef
39.
go back to reference Zhao P-P, Ge Y-W, Liu X-L, Ke Q-F, Zhang J-W, Zhu Z-A, Guo Y-P (2020) Ordered arrangement of hydrated GdPO4 nanorods in magnetic chitosan matrix promotes tumor photothermal therapy and bone regeneration against breast cancer bone metastases[J]. Chem Eng J 381:122694CrossRef Zhao P-P, Ge Y-W, Liu X-L, Ke Q-F, Zhang J-W, Zhu Z-A, Guo Y-P (2020) Ordered arrangement of hydrated GdPO4 nanorods in magnetic chitosan matrix promotes tumor photothermal therapy and bone regeneration against breast cancer bone metastases[J]. Chem Eng J 381:122694CrossRef
40.
go back to reference Li Q, Chao Y, Liu B, Xiao Z, Yang Z, Wu Y, Liu Z (2022) Disulfiram loaded calcium phosphate nanoparticles for enhanced cancer immunotherapy[J]. Biomaterials 291:121880CrossRef Li Q, Chao Y, Liu B, Xiao Z, Yang Z, Wu Y, Liu Z (2022) Disulfiram loaded calcium phosphate nanoparticles for enhanced cancer immunotherapy[J]. Biomaterials 291:121880CrossRef
41.
go back to reference Nakamura M, Ueda K, Yamamoto Y, Aoki K, Zhang M, Saito N, Yudasaka M (2022) Bisphosphonate type-dependent cell viability suppressive effects of carbon nanohorn-calcium phosphate-bisphosphonate nanocomposites[J]. Biomater Sci 10:6037–6048CrossRef Nakamura M, Ueda K, Yamamoto Y, Aoki K, Zhang M, Saito N, Yudasaka M (2022) Bisphosphonate type-dependent cell viability suppressive effects of carbon nanohorn-calcium phosphate-bisphosphonate nanocomposites[J]. Biomater Sci 10:6037–6048CrossRef
42.
go back to reference Kumbhar PS, Sakate AM, Patil OB, Manjappa AS, Disouza JI (2020) Podophyllotoxin-polyacrylic acid conjugate micelles: improved anticancer efficacy against multidrug-resistant breast cancer[J]. J Egypt Natl Cancer Inst 32:42CrossRef Kumbhar PS, Sakate AM, Patil OB, Manjappa AS, Disouza JI (2020) Podophyllotoxin-polyacrylic acid conjugate micelles: improved anticancer efficacy against multidrug-resistant breast cancer[J]. J Egypt Natl Cancer Inst 32:42CrossRef
43.
go back to reference Zhao H, Wang L, Zeng K, Li J, Chen W, Liu YN (2021) Nanomessenger-mediated signaling cascade for antitumor immunotherapy[J]. ACS Nano 15:13188–13199CrossRef Zhao H, Wang L, Zeng K, Li J, Chen W, Liu YN (2021) Nanomessenger-mediated signaling cascade for antitumor immunotherapy[J]. ACS Nano 15:13188–13199CrossRef
44.
go back to reference Li D, Bao A, Chen X, Li S, Wang T, Zhang L, Ji J, Li Q, Wang C, Gao Y, Yang Y, Dong X (2020) Prussian blue@Polyacrylic acid/Au aggregate Janus nanoparticles for CT imaging-guided chemotherapy and enhanced photothermal therapy[J]. Adv Therap 3:2000091CrossRef Li D, Bao A, Chen X, Li S, Wang T, Zhang L, Ji J, Li Q, Wang C, Gao Y, Yang Y, Dong X (2020) Prussian blue@Polyacrylic acid/Au aggregate Janus nanoparticles for CT imaging-guided chemotherapy and enhanced photothermal therapy[J]. Adv Therap 3:2000091CrossRef
45.
go back to reference Amini-Fazl MS, Mohammadi R, Kheiri K (2019) 5-Fluorouracil loaded chitosan/polyacrylic acid/Fe3O4 magnetic nanocomposite hydrogel as a potential anticancer drug delivery system[J]. Int J Biol Macromol 132:506–513CrossRef Amini-Fazl MS, Mohammadi R, Kheiri K (2019) 5-Fluorouracil loaded chitosan/polyacrylic acid/Fe3O4 magnetic nanocomposite hydrogel as a potential anticancer drug delivery system[J]. Int J Biol Macromol 132:506–513CrossRef
46.
go back to reference Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Tamura H, Jayakumar R (2011) Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells[J]. Carbohydr Polym 83:452–461CrossRef Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Tamura H, Jayakumar R (2011) Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells[J]. Carbohydr Polym 83:452–461CrossRef
47.
go back to reference Kimmelman AC, White E (2017) Autophagy and tumor metabolism[J]. Cell Metab 25:1037–1043CrossRef Kimmelman AC, White E (2017) Autophagy and tumor metabolism[J]. Cell Metab 25:1037–1043CrossRef
48.
go back to reference Sun WL, Chen J, Wang YP, Zheng H (2011) Autophagy protects breast cancer cells from epirubicin-induced apoptosis and facilitates epirubicin-resistance development[J]. Autophagy 7:1035–1044CrossRef Sun WL, Chen J, Wang YP, Zheng H (2011) Autophagy protects breast cancer cells from epirubicin-induced apoptosis and facilitates epirubicin-resistance development[J]. Autophagy 7:1035–1044CrossRef
Metadata
Title
Acid-responsive drug-loaded copper phosphate nanoparticles for tumor cell therapy through synergistic apoptosis and ferroptosis strategy
Authors
Sheng Zhao
Liang He
Yihao Sun
Ting Xu
Chunmei Chen
Yi Ouyang
Yan Chen
Yixin Tan
Benqing Zhou
Hui Liu
Publication date
01-01-2023
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 1/2023
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-022-05655-5

Other articles of this Issue 1/2023

Journal of Nanoparticle Research 1/2023 Go to the issue

Premium Partners