Skip to main content
Top

2017 | OriginalPaper | Chapter

Acoustic Cell Manipulation

Authors : Andreas Lenshof, Carl Johannesson, Mikael Evander, Johan Nilsson, Thomas Laurell

Published in: Microtechnology for Cell Manipulation and Sorting

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter reviews recent developments in the field of acoustic manipulation and processing of cells in microfluidic systems and gives an overview of different acoustofluidic operating modalities. Continuous flow-based acoustophoresis and acoustic trapping are key areas of interest. In view of the topic of this publication we have limited this chapter to mainly cover acoustofluidic work that concerns cell handling and cell-based studies. A focus is therefore maintained on developments that demonstrate how microscale acoustofluidic systems can be designed to solve unmet needs in the everyday work of life science laboratories related to cell biology or clinically relevant research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Antfolk M, Antfolk C, Lilja H et al (2015a) A single inlet two-stage acoustophoresis chip enabling tumor cell enrichment from white blood cells. Lab Chip 15:2102–2109CrossRef Antfolk M, Antfolk C, Lilja H et al (2015a) A single inlet two-stage acoustophoresis chip enabling tumor cell enrichment from white blood cells. Lab Chip 15:2102–2109CrossRef
go back to reference Antfolk M, Magnusson C, Augustsson P et al (2015b) Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells. Anal Chem 87:9322–9328CrossRef Antfolk M, Magnusson C, Augustsson P et al (2015b) Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells. Anal Chem 87:9322–9328CrossRef
go back to reference Augustsson P, Persson J, Ekström S et al (2009a) Decomplexing biofluids using microchip based acoustophoresis. Lab Chip 9:810–818CrossRef Augustsson P, Persson J, Ekström S et al (2009a) Decomplexing biofluids using microchip based acoustophoresis. Lab Chip 9:810–818CrossRef
go back to reference Augustsson P, Åberg LB, Swärd-Nilsson A-M et al (2009b) Buffer medium exchange in continuous cell and particle streams using ultrasonic standing wave focusing. Michrochim Acta 164:269–277CrossRef Augustsson P, Åberg LB, Swärd-Nilsson A-M et al (2009b) Buffer medium exchange in continuous cell and particle streams using ultrasonic standing wave focusing. Michrochim Acta 164:269–277CrossRef
go back to reference Augustsson P, Magnusson C, Nordin M et al (2012a) Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal Chem 84:7954–7962CrossRef Augustsson P, Magnusson C, Nordin M et al (2012a) Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal Chem 84:7954–7962CrossRef
go back to reference Augustsson P, Malm J, Ekström S (2012b) Acoustophoretic microfluidic chip for sequential elution of surface bound molecules from beads or cells. Biomicrofluidics 6:034115CrossRef Augustsson P, Malm J, Ekström S (2012b) Acoustophoretic microfluidic chip for sequential elution of surface bound molecules from beads or cells. Biomicrofluidics 6:034115CrossRef
go back to reference Augustsson P, Karlsen JT, Su HW et al (2016a) Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nat Commun 7:11556CrossRef Augustsson P, Karlsen JT, Su HW et al (2016a) Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nat Commun 7:11556CrossRef
go back to reference Augustsson P, Magnusson C, Lilja H, Laurell T (2016b) Acoustophoresis in tumor cell enrichment. In: Fan HZH (ed) Circulating tumor cells: isolation and analysis. Wiley, London, pp 227–238. ISBN 9781118915530 Augustsson P, Magnusson C, Lilja H, Laurell T (2016b) Acoustophoresis in tumor cell enrichment. In: Fan HZH (ed) Circulating tumor cells: isolation and analysis. Wiley, London, pp 227–238. ISBN 9781118915530
go back to reference Austin Suthanthiraraj PP, Piyasena ME, Woods TA et al (2012) One-dimensional acoustic waves in rectangular channels flow cytometry. Methods 57:259–271CrossRef Austin Suthanthiraraj PP, Piyasena ME, Woods TA et al (2012) One-dimensional acoustic waves in rectangular channels flow cytometry. Methods 57:259–271CrossRef
go back to reference Barnkob R, Augustsson P, Laurell T, Bruus H (2012) Acoustic radiation- and streaming-induced microparticle velocities determined by micro-PIV in an ultrasound symmetry plane. Phys Rev E 86:056307 2012CrossRef Barnkob R, Augustsson P, Laurell T, Bruus H (2012) Acoustic radiation- and streaming-induced microparticle velocities determined by micro-PIV in an ultrasound symmetry plane. Phys Rev E 86:056307 2012CrossRef
go back to reference Bazou D, Kuznetsova LA, Coakley WT (2005) Physical environment of 2-D animal cell aggregates formed in a short pathlength ultrasound standing wave trap. Ultrasound Med Biol 31(3):423–430 2005CrossRef Bazou D, Kuznetsova LA, Coakley WT (2005) Physical environment of 2-D animal cell aggregates formed in a short pathlength ultrasound standing wave trap. Ultrasound Med Biol 31(3):423–430 2005CrossRef
go back to reference Bengtsson M, Laurell T (2004) Ultrasonic agitation in microchannels. Anal Bioanal Chem 378:1716–1721CrossRef Bengtsson M, Laurell T (2004) Ultrasonic agitation in microchannels. Anal Bioanal Chem 378:1716–1721CrossRef
go back to reference Bjerknes VFK (1906) Fields of force. Columbia University, New YorkMATH Bjerknes VFK (1906) Fields of force. Columbia University, New YorkMATH
go back to reference Bruus H (2012) Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12:1014–1021CrossRef Bruus H (2012) Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12:1014–1021CrossRef
go back to reference Burguillos MA, Magnusson C, Nordin M et al (2013) Microchannel acoustophoresis does not impact survival or function of microglia, leukocytes or tumor cells. PLoS ONE 8:e64233CrossRef Burguillos MA, Magnusson C, Nordin M et al (2013) Microchannel acoustophoresis does not impact survival or function of microglia, leukocytes or tumor cells. PLoS ONE 8:e64233CrossRef
go back to reference Carugo D, Ankrett DN, Glynne-Jones P et al (2011) Contrast agent-free sonoporation: the use of an ultrasonic standing wave microfluidic system for the delivery of pharmaceutical agents. Biomicrofluidics 5:044108CrossRef Carugo D, Ankrett DN, Glynne-Jones P et al (2011) Contrast agent-free sonoporation: the use of an ultrasonic standing wave microfluidic system for the delivery of pharmaceutical agents. Biomicrofluidics 5:044108CrossRef
go back to reference Chen Y, Li S, Gu Y et al (2014) Continuous enrichment of low-abundance cell samples using standing surface acoustic waves (SSAW). Lab Chip 14:924–930CrossRef Chen Y, Li S, Gu Y et al (2014) Continuous enrichment of low-abundance cell samples using standing surface acoustic waves (SSAW). Lab Chip 14:924–930CrossRef
go back to reference Christakou AE, Ohlin M, Vanherberghen B et al (2013) Live cell imaging in a micro-array of acoustic traps facilitates quantification of natural killer cell heterogeneity. Integr Biol 5:712–719CrossRef Christakou AE, Ohlin M, Vanherberghen B et al (2013) Live cell imaging in a micro-array of acoustic traps facilitates quantification of natural killer cell heterogeneity. Integr Biol 5:712–719CrossRef
go back to reference Christakou AE, Ohlin M, Önfelt B et al (2015) Ultrasonic three-dimensional on-chip cell culture for dynamic studies of tumor immune surveillance by natural killer cells. Lab Chip 15:3222–3231CrossRef Christakou AE, Ohlin M, Önfelt B et al (2015) Ultrasonic three-dimensional on-chip cell culture for dynamic studies of tumor immune surveillance by natural killer cells. Lab Chip 15:3222–3231CrossRef
go back to reference Coakley WT, Bardsley DW, Grundy MA et al (1989) Cell manipulation in ultrasonic standing wave fields. J Chem Technol Biotechnol 44:43–62 Coakley WT, Bardsley DW, Grundy MA et al (1989) Cell manipulation in ultrasonic standing wave fields. J Chem Technol Biotechnol 44:43–62
go back to reference Coakley WT, Bazou D, Morgan J et al (2004) Cell-cell contact and membrane spreading in an ultrasound trap. Colloids Surf B 34:221–230CrossRef Coakley WT, Bazou D, Morgan J et al (2004) Cell-cell contact and membrane spreading in an ultrasound trap. Colloids Surf B 34:221–230CrossRef
go back to reference Collins DJ, Alan T, Neild A (2014) The particle valve: on-demand particle trapping, filtering, and release from a microfabricated polydimethylsiloxane membrane using surface acoustic waves. Appl Phys Lett 105:033509CrossRef Collins DJ, Alan T, Neild A (2014) The particle valve: on-demand particle trapping, filtering, and release from a microfabricated polydimethylsiloxane membrane using surface acoustic waves. Appl Phys Lett 105:033509CrossRef
go back to reference Collins DJ, Morahan B, Garcia-Bustos J et al (2015) Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun 6:8686CrossRef Collins DJ, Morahan B, Garcia-Bustos J et al (2015) Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun 6:8686CrossRef
go back to reference Courtney CRP, Ong C-K, Drinkwater BW et al (2012) Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves. Proc R Soc A Math Phys Eng Sci 468(2138):337–360CrossRef Courtney CRP, Ong C-K, Drinkwater BW et al (2012) Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves. Proc R Soc A Math Phys Eng Sci 468(2138):337–360CrossRef
go back to reference Courtney CRP, Demore CEM, Wu H et al (2014) Independent trapping and manipulation of microparticles using dexterous acoustic tweezers. Appl Phys Lett 104:154103CrossRef Courtney CRP, Demore CEM, Wu H et al (2014) Independent trapping and manipulation of microparticles using dexterous acoustic tweezers. Appl Phys Lett 104:154103CrossRef
go back to reference Cousins CM, Holownia P, Hawkes JJ et al (2000) Plasma preparation from whole blood using ultrasound. Ultrasound Med Biol 26(5):881–888CrossRef Cousins CM, Holownia P, Hawkes JJ et al (2000) Plasma preparation from whole blood using ultrasound. Ultrasound Med Biol 26(5):881–888CrossRef
go back to reference Deshmukh S, Brzozka Z, Augustsson P et al (2014) Acoustic radiation forces at liquid interfaces impact the performance of acoustophoresis. Lab Chip 14:3394–3400CrossRef Deshmukh S, Brzozka Z, Augustsson P et al (2014) Acoustic radiation forces at liquid interfaces impact the performance of acoustophoresis. Lab Chip 14:3394–3400CrossRef
go back to reference Ding X, Lin S-CS, Kiralya B et al (2012) On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. PNAS 109(28):11105–11109CrossRef Ding X, Lin S-CS, Kiralya B et al (2012) On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. PNAS 109(28):11105–11109CrossRef
go back to reference Dykes J, Lenshof A, Åstrand-Grundström I-B et al (2011) Efficient removal of platelets from peripheral blood progenitor cell products using a novel micro-chip based acoustophoretic platform. PLoS ONE 6:e23074CrossRef Dykes J, Lenshof A, Åstrand-Grundström I-B et al (2011) Efficient removal of platelets from peripheral blood progenitor cell products using a novel micro-chip based acoustophoretic platform. PLoS ONE 6:e23074CrossRef
go back to reference Dyson M, Woodward B, Pond JB (1971) Flow of red blood cells stopped by ultrasound. Nature 232:572–573 Dyson M, Woodward B, Pond JB (1971) Flow of red blood cells stopped by ultrasound. Nature 232:572–573
go back to reference Evander M, Johansson L, Lilliehorn T et al (2007) Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. Anal Chem 79(7):2984–2991 Evander M, Johansson L, Lilliehorn T et al (2007) Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. Anal Chem 79(7):2984–2991
go back to reference Evander M, Gidlöf O, Olde B et al (2015) Non-contact acoustic capture of microparticles from small plasma volumes. Lab Chip 15:2588–2596CrossRef Evander M, Gidlöf O, Olde B et al (2015) Non-contact acoustic capture of microparticles from small plasma volumes. Lab Chip 15:2588–2596CrossRef
go back to reference Franke T, Braunmüller S, Schmid L et al (2010) Surface acoustic wave actuated cellsorting (SAWACS). Lab Chip 10:789–794CrossRef Franke T, Braunmüller S, Schmid L et al (2010) Surface acoustic wave actuated cellsorting (SAWACS). Lab Chip 10:789–794CrossRef
go back to reference Glynne-Jones P, Démoré CEM, Ye C et al (2012) Array-controlled ultrasonic manipulation of particles in planar acoustic resonator. IEEE Trans Ultrason Ferroelectr Freq Control 59(6):1258–1266 Glynne-Jones P, Démoré CEM, Ye C et al (2012) Array-controlled ultrasonic manipulation of particles in planar acoustic resonator. IEEE Trans Ultrason Ferroelectr Freq Control 59(6):1258–1266
go back to reference Goddard G, Kaduchak G (2005) Ultrsonic particle concentration in a line-driven cylindrical tube. JASA 117(6):3440–3447CrossRef Goddard G, Kaduchak G (2005) Ultrsonic particle concentration in a line-driven cylindrical tube. JASA 117(6):3440–3447CrossRef
go back to reference Goddard GR, Sanders CK, Martin JC et al (2007) Analytical performance of an ultrasonic flow cytometer. Anal Chem 79:8740–8746CrossRef Goddard GR, Sanders CK, Martin JC et al (2007) Analytical performance of an ultrasonic flow cytometer. Anal Chem 79:8740–8746CrossRef
go back to reference Gorkov LP (1962) On the forces acting on a small particle in an acoustical field in a ideal fluid. Sov Phys Dokl 6(9):773–775 Gorkov LP (1962) On the forces acting on a small particle in an acoustical field in a ideal fluid. Sov Phys Dokl 6(9):773–775
go back to reference Grenvall C, Augustsson P, Folkenberg JR, Laurell T (2009) Harmonic microchip acoustophoresis: A route to online raw milk sample precondition in protein and lipid content quality control. Anal Chem 81:6195–6200 Grenvall C, Augustsson P, Folkenberg JR, Laurell T (2009) Harmonic microchip acoustophoresis: A route to online raw milk sample precondition in protein and lipid content quality control. Anal Chem 81:6195–6200
go back to reference Grenvall C, Folkenberg JR, Augustsson P et al (2012) Label-free somatic cell cytometry in raw milk using acoustophoresis. Cytometry A 81A:1076–1083CrossRef Grenvall C, Folkenberg JR, Augustsson P et al (2012) Label-free somatic cell cytometry in raw milk using acoustophoresis. Cytometry A 81A:1076–1083CrossRef
go back to reference Grenvall C, Antfolk C, Bisgaard CZ, Laurell T (2014) Two-dimensional acoustic particle focusing enables sheathless chip Coulter counter with planar electrode configuration. Lab Chip 14(24):4629–4637CrossRef Grenvall C, Antfolk C, Bisgaard CZ, Laurell T (2014) Two-dimensional acoustic particle focusing enables sheathless chip Coulter counter with planar electrode configuration. Lab Chip 14(24):4629–4637CrossRef
go back to reference Grenvall C, Magnusson C, Lilja H et al (2015) Concurrent isolation of lymphocytes and granulocytes using prefocused free flow acoustophoresis. Anal Chem 87:5596–5604CrossRef Grenvall C, Magnusson C, Lilja H et al (2015) Concurrent isolation of lymphocytes and granulocytes using prefocused free flow acoustophoresis. Anal Chem 87:5596–5604CrossRef
go back to reference Gröschl M (1998) Ultrasonic separation of suspended particles—Part I: Fundamentals. Acustica 84:432–447 Gröschl M (1998) Ultrasonic separation of suspended particles—Part I: Fundamentals. Acustica 84:432–447
go back to reference Gröschl M, Burger W, Handl B et al (1998) Ultrasonic separation of suspended particles—Part III: Application in biotechnology. Acustica 84:815–822 Gröschl M, Burger W, Handl B et al (1998) Ultrasonic separation of suspended particles—Part III: Application in biotechnology. Acustica 84:815–822
go back to reference Guo F, Mao Z, Chen Y et al (2016) Three-dimensional manipulation of single cells using surface acoustic waves. PNAS 113(6):1522–1527 Guo F, Mao Z, Chen Y et al (2016) Three-dimensional manipulation of single cells using surface acoustic waves. PNAS 113(6):1522–1527
go back to reference Hammarström B, Evander M, Barbeau H et al (2010) Non-contact acoustic cell trapping in disposable glass capillaries. Lab Chip 2010(10):2251–2257CrossRef Hammarström B, Evander M, Barbeau H et al (2010) Non-contact acoustic cell trapping in disposable glass capillaries. Lab Chip 2010(10):2251–2257CrossRef
go back to reference Hammarström B, Laurell T, Nilsson J (2012) Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems. Lab Chip 12:4296–4304CrossRef Hammarström B, Laurell T, Nilsson J (2012) Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems. Lab Chip 12:4296–4304CrossRef
go back to reference Hammarström B, Evander M, Wahlström J et al (2014a) Frequency tracking in acoustic trapping for improved performance stability and system surveillance. Lab Chip 14:1005–1013CrossRef Hammarström B, Evander M, Wahlström J et al (2014a) Frequency tracking in acoustic trapping for improved performance stability and system surveillance. Lab Chip 14:1005–1013CrossRef
go back to reference Hammarström B, Nilson B, Laurell T et al (2014b) Acoustic trapping for bacteria identification in positive blood cultures with MALDI-TOF MS. Anal Chem 86:10560–10567CrossRef Hammarström B, Nilson B, Laurell T et al (2014b) Acoustic trapping for bacteria identification in positive blood cultures with MALDI-TOF MS. Anal Chem 86:10560–10567CrossRef
go back to reference Harris NR, Hill M, Beeby S et al (2003) A silicon microfluidic ultrasonic separator. Sens Act B 95:425–434CrossRef Harris NR, Hill M, Beeby S et al (2003) A silicon microfluidic ultrasonic separator. Sens Act B 95:425–434CrossRef
go back to reference Hawkes JJ, Coakley WT (2001) Force field particle filter, combining ultrasound standing waves and laminar flow. Sens Act B 75:213–222CrossRef Hawkes JJ, Coakley WT (2001) Force field particle filter, combining ultrasound standing waves and laminar flow. Sens Act B 75:213–222CrossRef
go back to reference Hawkes JJ, Radel S (2013) Acoustofluidics 22: multi-wavelength resonators, applications and considerations. Lab Chip 13:610–627CrossRef Hawkes JJ, Radel S (2013) Acoustofluidics 22: multi-wavelength resonators, applications and considerations. Lab Chip 13:610–627CrossRef
go back to reference Hawkes JJ, Barber RW, Emerson DR et al (2004) Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel. Lab Chip 4:446–452CrossRef Hawkes JJ, Barber RW, Emerson DR et al (2004) Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel. Lab Chip 4:446–452CrossRef
go back to reference Hertz G, Mende H (1939) The acoustic radiation pressure in liquids. Z Phys 114:354–367CrossRef Hertz G, Mende H (1939) The acoustic radiation pressure in liquids. Z Phys 114:354–367CrossRef
go back to reference Hwang JY, Kim J, Park JM et al (2016) Cell deformation by single-beam acoustic trapping: a promising tool for measurements of cell mechanics. Nat Sci Rep 6:27238. doi:10.1038/srep27238 CrossRef Hwang JY, Kim J, Park JM et al (2016) Cell deformation by single-beam acoustic trapping: a promising tool for measurements of cell mechanics. Nat Sci Rep 6:27238. doi:10.​1038/​srep27238 CrossRef
go back to reference Iranmanesh I, Ramachandraiah H, Russom A et al (2015) On-chip ultrasonic sample preparation for cell based assays. RSC Adv 5:74304–74311CrossRef Iranmanesh I, Ramachandraiah H, Russom A et al (2015) On-chip ultrasonic sample preparation for cell based assays. RSC Adv 5:74304–74311CrossRef
go back to reference Jakobsson O, Grenvall C, Nordin M et al (2014a) Acoustic actuated fluorescence activated sorting of microparticles. Lab Chip 14:1943–1950CrossRef Jakobsson O, Grenvall C, Nordin M et al (2014a) Acoustic actuated fluorescence activated sorting of microparticles. Lab Chip 14:1943–1950CrossRef
go back to reference Jakobsson O, Antfolk M, Laurell T (2014b) Continuous flow two-dimensional acoustic orientation of nonspherical cells. Anal Chem 86:6111–6114CrossRef Jakobsson O, Antfolk M, Laurell T (2014b) Continuous flow two-dimensional acoustic orientation of nonspherical cells. Anal Chem 86:6111–6114CrossRef
go back to reference Jakobsson O, Oh SS, Antfolk M et al (2015) Thousand-fold volumetric concentration of live cells with a recirculating acoustofluidic device. Anal Chem 87:8497–8502CrossRef Jakobsson O, Oh SS, Antfolk M et al (2015) Thousand-fold volumetric concentration of live cells with a recirculating acoustofluidic device. Anal Chem 87:8497–8502CrossRef
go back to reference Johansson L, Nikolajeff F, Johansson S et al (2009) On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer. Anal Chem 81:5188–5196CrossRef Johansson L, Nikolajeff F, Johansson S et al (2009) On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer. Anal Chem 81:5188–5196CrossRef
go back to reference Jönsson H, Holm C, Nilsson A et al (2004) Particle separation using ultrasound can radically reduce embolic load to brain after cardiac surgery. Ann Thorac Surg 78:1572–1578CrossRef Jönsson H, Holm C, Nilsson A et al (2004) Particle separation using ultrasound can radically reduce embolic load to brain after cardiac surgery. Ann Thorac Surg 78:1572–1578CrossRef
go back to reference Leão-Neto JP, Silva GT (2016) Acoustic radiation force and torque exerted on a small viscoelastic particle in an ideal fluid. Ultrasonics 71(2016):1–11CrossRef Leão-Neto JP, Silva GT (2016) Acoustic radiation force and torque exerted on a small viscoelastic particle in an ideal fluid. Ultrasonics 71(2016):1–11CrossRef
go back to reference Lee C, Jeong JS, Hwang JY et al (2014) Non-contact multi-particle annular patterning and manipulation with ultrasound microbeam. Appl Phys Let 104:244107CrossRef Lee C, Jeong JS, Hwang JY et al (2014) Non-contact multi-particle annular patterning and manipulation with ultrasound microbeam. Appl Phys Let 104:244107CrossRef
go back to reference Lei J, Glynne-Jones P, Hill M (2013) Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices. Lab Chip 13:2133–2143CrossRef Lei J, Glynne-Jones P, Hill M (2013) Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices. Lab Chip 13:2133–2143CrossRef
go back to reference Lei J, Glynne-Jones P, Hill (2016) Modal Rayleigh-like streaming in layered acoustofluidic devices. Phys Fluids 28:012004CrossRef Lei J, Glynne-Jones P, Hill (2016) Modal Rayleigh-like streaming in layered acoustofluidic devices. Phys Fluids 28:012004CrossRef
go back to reference Lenshof A, Tajudin AA, Järås K et al (2009) Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal Chem 81:6030–6037CrossRef Lenshof A, Tajudin AA, Järås K et al (2009) Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal Chem 81:6030–6037CrossRef
go back to reference Lenshof A, Warner B, Laurell T (2010) Acoustophoretic pretreatment of cell lysate prior to FACS analysis. In: Micro total analysis systems 2010, 3–7 Oct, Groningen, Netherlands, pp 1577–1579 Lenshof A, Warner B, Laurell T (2010) Acoustophoretic pretreatment of cell lysate prior to FACS analysis. In: Micro total analysis systems 2010, 3–7 Oct, Groningen, Netherlands, pp 1577–1579
go back to reference Lenshof A, Evander M, Laurell T et al (2012) Acoustofluidics 5: building microfluidic acoustic resonators. Lab Chip 12:684–695CrossRef Lenshof A, Evander M, Laurell T et al (2012) Acoustofluidics 5: building microfluidic acoustic resonators. Lab Chip 12:684–695CrossRef
go back to reference Lenshof A, Jamal A, Dykes J et al (2014) Efficient purification of CD4+ lymphocytes from peripheral blood progenitor cell products using affinity bead acoustophoresis. Cytometry A 85A:933–941CrossRef Lenshof A, Jamal A, Dykes J et al (2014) Efficient purification of CD4+ lymphocytes from peripheral blood progenitor cell products using affinity bead acoustophoresis. Cytometry A 85A:933–941CrossRef
go back to reference Ley M, Bruus H (2016) Continuum modeling of hydrodynamic particle–particle interactions in microfluidic high concentration suspensions. Lab Chip 16:1178–1188CrossRef Ley M, Bruus H (2016) Continuum modeling of hydrodynamic particle–particle interactions in microfluidic high concentration suspensions. Lab Chip 16:1178–1188CrossRef
go back to reference Li S, Glynne-Jones P, Andriotis OG et al (2014) Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering. Lab Chip 14:4475–4485CrossRef Li S, Glynne-Jones P, Andriotis OG et al (2014) Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering. Lab Chip 14:4475–4485CrossRef
go back to reference Li P, Mao Z, Peng Z et al (2015a) Acoustic separation of circulating tumor cells. PNAS 112:4970–4975CrossRef Li P, Mao Z, Peng Z et al (2015a) Acoustic separation of circulating tumor cells. PNAS 112:4970–4975CrossRef
go back to reference Li S, Ding X, Mao Z et al (2015b) Standing surface acoustic wave (SSAW)-based cell washing. Lab Chip 15:331–338CrossRef Li S, Ding X, Mao Z et al (2015b) Standing surface acoustic wave (SSAW)-based cell washing. Lab Chip 15:331–338CrossRef
go back to reference Manneberg O, Svennebring J, Hertz HM, Wiklund M (2008a) Wedge transducer design for two-dimensional ultrasonic manipulation in a microfluidic chip. J Micromech Microeng 18:095025CrossRef Manneberg O, Svennebring J, Hertz HM, Wiklund M (2008a) Wedge transducer design for two-dimensional ultrasonic manipulation in a microfluidic chip. J Micromech Microeng 18:095025CrossRef
go back to reference Manneberg O, Vanherberghen B, Svennebring J et al (2008b) A three-dimensional ultrasonic cage for characterization of individual cells. Appl Phys Lett 93:063901CrossRef Manneberg O, Vanherberghen B, Svennebring J et al (2008b) A three-dimensional ultrasonic cage for characterization of individual cells. Appl Phys Lett 93:063901CrossRef
go back to reference Mao Z, Xie Y, Guo F et al (2016) Experimental and numerical studies on standing surface acoustic wave microfluidics. Lab Chip 16:515–524CrossRef Mao Z, Xie Y, Guo F et al (2016) Experimental and numerical studies on standing surface acoustic wave microfluidics. Lab Chip 16:515–524CrossRef
go back to reference Mishra P, Hill M, Glynne-Jones P (2014) Deformation of red blood cells using acoustic radiation forces. Biomicrofluidics 8:034109CrossRef Mishra P, Hill M, Glynne-Jones P (2014) Deformation of red blood cells using acoustic radiation forces. Biomicrofluidics 8:034109CrossRef
go back to reference Muller PB, Barnkob R, Herring Jensen MJ, Bruus H (2012) A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12:4617–4627CrossRef Muller PB, Barnkob R, Herring Jensen MJ, Bruus H (2012) A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12:4617–4627CrossRef
go back to reference Muller PB, Rossi M, Marín ÁG et al (2013) Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. Phys Rev E 88(2):023006 Muller PB, Rossi M, Marín ÁG et al (2013) Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. Phys Rev E 88(2):023006
go back to reference Nawaz AA, Chen Y, Nama N et al (2015) Acoustofluidic fluorescence activated cell sorter. Anal Chem 87:12051–12058CrossRef Nawaz AA, Chen Y, Nama N et al (2015) Acoustofluidic fluorescence activated cell sorter. Anal Chem 87:12051–12058CrossRef
go back to reference Ngamsom B, Lopez-Martinez MJ, Raymond J-C et al (2016) On-chip acoustophoretic isolation of microflora including S. typhimurium from raw chicken, beef and blood samples. J Microbiol Methods 123:79–86CrossRef Ngamsom B, Lopez-Martinez MJ, Raymond J-C et al (2016) On-chip acoustophoretic isolation of microflora including S. typhimurium from raw chicken, beef and blood samples. J Microbiol Methods 123:79–86CrossRef
go back to reference Nilsson A, Petersson F, Persson H et al (2002) Autologous blood recovery and wash in microfluidic channel arrays utilizing ultrasonic standing waves. In: Micro total analysis systems 2002, pp 625–626, 3–7 Nov, Nara, Japan Nilsson A, Petersson F, Persson H et al (2002) Autologous blood recovery and wash in microfluidic channel arrays utilizing ultrasonic standing waves. In: Micro total analysis systems 2002, pp 625–626, 3–7 Nov, Nara, Japan
go back to reference Nilsson A, Petersson F, Jönsson H et al (2004) Acoustic control of suspended particles in microfluidic chips. Lab Chip 4:131–135CrossRef Nilsson A, Petersson F, Jönsson H et al (2004) Acoustic control of suspended particles in microfluidic chips. Lab Chip 4:131–135CrossRef
go back to reference Nordin M, Laurell T (2012) Two-hundredfold volume concentration of dilute cell and particle suspensions using chip integrated multistage acoustophoresis. Lab Chip 12:4610–4616CrossRef Nordin M, Laurell T (2012) Two-hundredfold volume concentration of dilute cell and particle suspensions using chip integrated multistage acoustophoresis. Lab Chip 12:4610–4616CrossRef
go back to reference Ohlin M, Christakou AE, Frisk T et al (2013) Influence of acoustic streaming on ultrasonic particle manipulation in a 100-well ring-transducer microplate. Micromech Microeng 23:035008CrossRef Ohlin M, Christakou AE, Frisk T et al (2013) Influence of acoustic streaming on ultrasonic particle manipulation in a 100-well ring-transducer microplate. Micromech Microeng 23:035008CrossRef
go back to reference Olsson P, Evander M, Petersson K et al (2016) Integrated acoustic separation, enrichment and microchip PCR detection of bacteria from blood for rapid sepsis diagnostics. Anal Chem. doi:10.1021/acs.analchem.6b00323 Olsson P, Evander M, Petersson K et al (2016) Integrated acoustic separation, enrichment and microchip PCR detection of bacteria from blood for rapid sepsis diagnostics. Anal Chem. doi:10.​1021/​acs.​analchem.​6b00323
go back to reference Persson J, Augustsson P, Laurell T, Ohlin M (2008) Acoustic microfluidic chip technology to facilitate automation of phage display selection of specific binders from protein library es. FEBS J 275:5657–5666CrossRef Persson J, Augustsson P, Laurell T, Ohlin M (2008) Acoustic microfluidic chip technology to facilitate automation of phage display selection of specific binders from protein library es. FEBS J 275:5657–5666CrossRef
go back to reference Peterson S, Perkins G, Baker C (1986) Development of an ultrasonic blood cell separator. In: Proceedings of 8th annual conference of the Engineering in Medicine and Biology Society, pp 154–156 Peterson S, Perkins G, Baker C (1986) Development of an ultrasonic blood cell separator. In: Proceedings of 8th annual conference of the Engineering in Medicine and Biology Society, pp 154–156
go back to reference Petersson F, Nilsson A, Holm C et al (2004) Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels. Analyst 129:938–943CrossRef Petersson F, Nilsson A, Holm C et al (2004) Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels. Analyst 129:938–943CrossRef
go back to reference Petersson F, Nilsson A, Jönsson H et al (2005) Carrier medium exchange through ultrasonic particle switching in microfluidic channels. Anal Chem 77:1216–1221CrossRef Petersson F, Nilsson A, Jönsson H et al (2005) Carrier medium exchange through ultrasonic particle switching in microfluidic channels. Anal Chem 77:1216–1221CrossRef
go back to reference Petersson F, Åberg L, Swärd-Nilsson A-M et al (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 79:5117–5123CrossRef Petersson F, Åberg L, Swärd-Nilsson A-M et al (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 79:5117–5123CrossRef
go back to reference Piyasena ME, Austin Suthanthiraraj PP, Appelgate Jr RW et al (2012) Multinode acoustic focusing for parallel flow cytometry. Anal Chem 84:1831–1839 Piyasena ME, Austin Suthanthiraraj PP, Appelgate Jr RW et al (2012) Multinode acoustic focusing for parallel flow cytometry. Anal Chem 84:1831–1839
go back to reference Prest JE, Treves Brown BJ, Fielden PR, Wilkinson SJ, Hawkes JJ (2015) Scaling-up ultrasound standing wave enhanced sedimentation filters. Ultrasonics 56:260–270CrossRef Prest JE, Treves Brown BJ, Fielden PR, Wilkinson SJ, Hawkes JJ (2015) Scaling-up ultrasound standing wave enhanced sedimentation filters. Ultrasonics 56:260–270CrossRef
go back to reference Sapozhnikov OA, Bailey MR (2013) Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid. J. Acoust Soc Am 133(2):661–676 Sapozhnikov OA, Bailey MR (2013) Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid. J. Acoust Soc Am 133(2):661–676
go back to reference Shi J, Mao X, Ahmed D, Colletti A, Huang TJ (2008) Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip 8:221–223CrossRef Shi J, Mao X, Ahmed D, Colletti A, Huang TJ (2008) Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip 8:221–223CrossRef
go back to reference Shi J, Ahmed D, Xiaole MX et al (2009) Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves. Lab Chip 2009(9):2890–2895CrossRef Shi J, Ahmed D, Xiaole MX et al (2009) Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves. Lab Chip 2009(9):2890–2895CrossRef
go back to reference Silva GT, Bruus H (2014) Acoustic interaction forces between small particles in an ideal fluid. Phys Rev E 90(063007):2014 Silva GT, Bruus H (2014) Acoustic interaction forces between small particles in an ideal fluid. Phys Rev E 90(063007):2014
go back to reference Skotis GD, Cumming DRS, Roberts JN et al (2015) Dynamic acoustic field activated cell separation (DAFACS). Lab Chip 15:802–810CrossRef Skotis GD, Cumming DRS, Roberts JN et al (2015) Dynamic acoustic field activated cell separation (DAFACS). Lab Chip 15:802–810CrossRef
go back to reference Svennebring J, Manneberg O, Skafte-Pedersen P et al (2009) Selective bioparticle retention and characterization in a chip-integrated confocal ultrasonic cavity. Biotechnol Bioeng 103(2):323–328 Svennebring J, Manneberg O, Skafte-Pedersen P et al (2009) Selective bioparticle retention and characterization in a chip-integrated confocal ultrasonic cavity. Biotechnol Bioeng 103(2):323–328
go back to reference Tajudin AA, Petersson K, Lenshof A et al (2013) Integrated acoustic immunoaffinity-capture (IAI) platform for detection of PSA from whole blood samples. Lab Chip 13:1790–1796CrossRef Tajudin AA, Petersson K, Lenshof A et al (2013) Integrated acoustic immunoaffinity-capture (IAI) platform for detection of PSA from whole blood samples. Lab Chip 13:1790–1796CrossRef
go back to reference Tenje M, Lundgren MN, Swärd-Nilsson A-M et al (2015a) Acoustophoretic removal of proteins from blood components. Biomed Microdevices 17(2015):95CrossRef Tenje M, Lundgren MN, Swärd-Nilsson A-M et al (2015a) Acoustophoretic removal of proteins from blood components. Biomed Microdevices 17(2015):95CrossRef
go back to reference Tenje M, Xia H, Evander M et al (2015b) Acoustic trapping as a generic non-contact incubation site for multiplex bead-based assays. Anal Chim Acta 853(2015):682–688CrossRef Tenje M, Xia H, Evander M et al (2015b) Acoustic trapping as a generic non-contact incubation site for multiplex bead-based assays. Anal Chim Acta 853(2015):682–688CrossRef
go back to reference Thevoz P, Adams JD, Shea H et al (2010) Acoustophoretic synchronization of mammalian cells in microchannels. Anal Chem 82:3094–3098CrossRef Thevoz P, Adams JD, Shea H et al (2010) Acoustophoretic synchronization of mammalian cells in microchannels. Anal Chem 82:3094–3098CrossRef
go back to reference Urbansky A, Lenshof A, Dykes J et al (2016) Affinity-bead-mediated enrichment of CD8+ lymphocytes from peripheral blood progenitor cell products using acoustophoresis. Micromachines 7:101CrossRef Urbansky A, Lenshof A, Dykes J et al (2016) Affinity-bead-mediated enrichment of CD8+ lymphocytes from peripheral blood progenitor cell products using acoustophoresis. Micromachines 7:101CrossRef
go back to reference Vanherberghen B, Manneberg O, Christakou A et al (2010) Ultrasound-controlled cell aggregation in a multi-well chip. Lab Chip 10:2727–2732CrossRef Vanherberghen B, Manneberg O, Christakou A et al (2010) Ultrasound-controlled cell aggregation in a multi-well chip. Lab Chip 10:2727–2732CrossRef
go back to reference Voorhees Norris J, Evander M, Horsman-Hall KM et al (2008) Acoustic differential extraction on a microdevice: improvements in fluidic control for separation of sperm cells and epithelial cell lysate. In: Locascio LE, Gaitan M, Paegel BM, Ross DJ, Vreeland WN (eds) Micro total analysis systems. Society for Chemistry and Micro-Nano Systems, San Diego, p 1156 Voorhees Norris J, Evander M, Horsman-Hall KM et al (2008) Acoustic differential extraction on a microdevice: improvements in fluidic control for separation of sperm cells and epithelial cell lysate. In: Locascio LE, Gaitan M, Paegel BM, Ross DJ, Vreeland WN (eds) Micro total analysis systems. Society for Chemistry and Micro-Nano Systems, San Diego, p 1156
go back to reference Voorhees Norris J, Evander M, Katie M, Horsman-Hall KM et al (2009) Acoustic differential extraction for forensic analysis of sexual assault evidence. Anal Chem 81:6089–6095CrossRef Voorhees Norris J, Evander M, Katie M, Horsman-Hall KM et al (2009) Acoustic differential extraction for forensic analysis of sexual assault evidence. Anal Chem 81:6089–6095CrossRef
go back to reference Warner B, Yu L, Blom M, Buesink W et al (2012) Improving flow cytometric assay performance using modular in-line acoustophoretic washing of lysed blood samples. In: CYTO 2012 ISAC XXVII International Congress, B78, p 184, 23–26 June, Leipzig, Germany Warner B, Yu L, Blom M, Buesink W et al (2012) Improving flow cytometric assay performance using modular in-line acoustophoretic washing of lysed blood samples. In: CYTO 2012 ISAC XXVII International Congress, B78, p 184, 23–26 June, Leipzig, Germany
go back to reference Weiser MAH, Apfel RE, Neppiras EA (1984) Interparticle forces on red cells in a standing wave field. Acustica 56:114–119 Weiser MAH, Apfel RE, Neppiras EA (1984) Interparticle forces on red cells in a standing wave field. Acustica 56:114–119
go back to reference Wiklund M (2012) Acoustofluidics 12: biocompatibility and cell viability in microfluidic acoustic resonators. Lab Chip 12:2018–2028CrossRef Wiklund M (2012) Acoustofluidics 12: biocompatibility and cell viability in microfluidic acoustic resonators. Lab Chip 12:2018–2028CrossRef
go back to reference Wiklund M, Nilsson S, Hertz H (2001) Ultrasonic trapping in capillaries for trace-amount biomedical analysis. J Appl Phys 90(1):1CrossRef Wiklund M, Nilsson S, Hertz H (2001) Ultrasonic trapping in capillaries for trace-amount biomedical analysis. J Appl Phys 90(1):1CrossRef
go back to reference Wiklund M, Spegel P, Nilsson S et al (2003) Ultrasonic-trap-enhanced selectivity in capillary electrophoresis. Ultrasonics 41(2003):329–333CrossRef Wiklund M, Spegel P, Nilsson S et al (2003) Ultrasonic-trap-enhanced selectivity in capillary electrophoresis. Ultrasonics 41(2003):329–333CrossRef
go back to reference Wiklund M, Green R, Ohlin M (2012) Acoustofluidics 14: applications of acoustic streaming in microfluidic devices. Lab Chip 12:2438–2451CrossRef Wiklund M, Green R, Ohlin M (2012) Acoustofluidics 14: applications of acoustic streaming in microfluidic devices. Lab Chip 12:2438–2451CrossRef
go back to reference Wiklund M, Christakou A, Ida II et al (2014) Ultrasound-induced cell-cell interaction studies in a multi-well microplate. Micromachines 2014(5):27–49CrossRef Wiklund M, Christakou A, Ida II et al (2014) Ultrasound-induced cell-cell interaction studies in a multi-well microplate. Micromachines 2014(5):27–49CrossRef
go back to reference Withworth G, Grundy MA, Coakley WT (1991) Transport and harvesting of suspended microparticles using modulated ultrasound. Ultrasonics 29:439–444CrossRef Withworth G, Grundy MA, Coakley WT (1991) Transport and harvesting of suspended microparticles using modulated ultrasound. Ultrasonics 29:439–444CrossRef
go back to reference Woodside SM, Bowen BD, Piret JM (1997) Measurement of ultrasonic forces for particle-liquid separations. AIChE J 43(7):1727–1736 Woodside SM, Bowen BD, Piret JM (1997) Measurement of ultrasonic forces for particle-liquid separations. AIChE J 43(7):1727–1736
go back to reference Yang AHJ, Soh HT (2012) Acoustophoretic sorting of viable mammalian cell in a microfluidic device. Anal Chem 84:10756–10762CrossRef Yang AHJ, Soh HT (2012) Acoustophoretic sorting of viable mammalian cell in a microfluidic device. Anal Chem 84:10756–10762CrossRef
go back to reference Zalis MC, Reyes JF, Augustsson P et al (2016) Label-free concentration of viable neurons, hESCs, and cancer cells by means of acoutophoresis, Integr Biol 8:332–340 Zalis MC, Reyes JF, Augustsson P et al (2016) Label-free concentration of viable neurons, hESCs, and cancer cells by means of acoutophoresis, Integr Biol 8:332–340
go back to reference Zhang X, Zhang G (2012) Acoustic radiation force of a gaussian beam incident on spherical particles in water. Ultrasound Med Biol 38(11):2007–2017 CrossRef Zhang X, Zhang G (2012) Acoustic radiation force of a gaussian beam incident on spherical particles in water. Ultrasound Med Biol 38(11):2007–2017 CrossRef
go back to reference Zmijan R, Jonnalagadda US, Carugo D et al (2015) High throughput imaging cytometer with acoustic focusing. RCS Advances 101:83206–83216 Zmijan R, Jonnalagadda US, Carugo D et al (2015) High throughput imaging cytometer with acoustic focusing. RCS Advances 101:83206–83216  
Metadata
Title
Acoustic Cell Manipulation
Authors
Andreas Lenshof
Carl Johannesson
Mikael Evander
Johan Nilsson
Thomas Laurell
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-44139-9_5