Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2018 | OriginalPaper | Chapter

10. Acoustic Metamaterials and Metadevices

Author : Xingcun Colin Tong

Published in: Functional Metamaterials and Metadevices

Publisher: Springer International Publishing

Abstract

Acoustic metamaterials have expanded the capabilities of acoustic wave manipulation with diverse application potentials, such as negative refraction, superresolution, cloaking, enhanced absorption, nonreciprocity, active control, and material tunability. Acoustic metamaterials are also expected to affect ultrasonic acoustics, where countless applications, such as medical imagining, lie detection. Owing to the simplicity of the fabrication process—compared to those for electronic and display devices, for example, the acoustic metadevices may be commercialized, targeting old challenges such as noise abatement and selective perception in human audition. Moreover, many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature. The new ideas hatched in acoustic metamaterials research, coupled with the expanding technologies of computational simulation and additive manufacturing, will produce the next generation of acoustical materials and metadevices. This chapter will review the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values and their implications for acoustic wave behaviors, including compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
go back to reference Arenas JP, Crocker MJ (2010) Recent trends in porous sound-absorbing materials. J Sound Vib 44:12–17 Arenas JP, Crocker MJ (2010) Recent trends in porous sound-absorbing materials. J Sound Vib 44:12–17
go back to reference Esfahlani H, Karkar S, Lissek H (2016) Exploiting the leaky-wave properties of transmission-line metamaterials for single-microphone direction finding. J Acoust Soc Am 139:3259–3266. doi:10.1121/1.4949544 CrossRef Esfahlani H, Karkar S, Lissek H (2016) Exploiting the leaky-wave properties of transmission-line metamaterials for single-microphone direction finding. J Acoust Soc Am 139:3259–3266. doi:10.1121/1.4949544 CrossRef
go back to reference Fleury R, Sounas D, Alù A (2015) An invisible acoustic sensor based on parity-time symmetry. Nat Commun 6:5905 CrossRef Fleury R, Sounas D, Alù A (2015) An invisible acoustic sensor based on parity-time symmetry. Nat Commun 6:5905 CrossRef
go back to reference Giovampaola CD, Engheta N (2014) Digital metamaterials. Nat Mater 13:1115–1121 Giovampaola CD, Engheta N (2014) Digital metamaterials. Nat Mater 13:1115–1121
go back to reference Haberman MR, Norris AN (2016) Acoustic metamaterials. Acoust Today 12(3):31–39 Haberman MR, Norris AN (2016) Acoustic metamaterials. Acoust Today 12(3):31–39
go back to reference Kaina N, Lemoult F, Fink M, Lerosey G (2015) Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525:77–81 CrossRef Kaina N, Lemoult F, Fink M, Lerosey G (2015) Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525:77–81 CrossRef
go back to reference Lee SH, Park CM, Seo YM, Wang ZG, Kim CK (2009) Acoustic metamaterial with negative density. Phys Lett A 373:4464–4469. doi:10.1016/j.physleta.2009.10.013 CrossRef Lee SH, Park CM, Seo YM, Wang ZG, Kim CK (2009) Acoustic metamaterial with negative density. Phys Lett A 373:4464–4469. doi:10.1016/j.physleta.2009.10.013 CrossRef
go back to reference Li J, Fok L, Yin X, Bartal G, Zhang X (2009) Experimental demonstration of an acoustic magnifying hyperlens. Nat Mater 8:931–934 CrossRef Li J, Fok L, Yin X, Bartal G, Zhang X (2009) Experimental demonstration of an acoustic magnifying hyperlens. Nat Mater 8:931–934 CrossRef
go back to reference Li Y, Jiang X, Li R-Q, Liang B, Zou X-Y, Yin L-L, Cheng J-C (2014) Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys Rev Appl 2:064002 CrossRef Li Y, Jiang X, Li R-Q, Liang B, Zou X-Y, Yin L-L, Cheng J-C (2014) Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys Rev Appl 2:064002 CrossRef
go back to reference Liang Z, Feng T, Lok S, Liu F, Ng KB, Chan CH, Wang J, Han S, Lee S, Li J (2013) Space-coiling metamaterials with double negativity and conical dispersion. Sci Rep 3:1614 CrossRef Liang Z, Feng T, Lok S, Liu F, Ng KB, Chan CH, Wang J, Han S, Lee S, Li J (2013) Space-coiling metamaterials with double negativity and conical dispersion. Sci Rep 3:1614 CrossRef
go back to reference Liu Z, Zhang Z, Mao Y, Zhu YY, Yang Z, Chan CT, Sheng P (2000) Locally resonant sonic materials. Science 289:1734–1736. doi:10.1126/science.289.5485.1734 CrossRef Liu Z, Zhang Z, Mao Y, Zhu YY, Yang Z, Chan CT, Sheng P (2000) Locally resonant sonic materials. Science 289:1734–1736. doi:10.1126/science.289.5485.1734 CrossRef
go back to reference Ma G, Sheng P (2016) Acoustic metamaterials: from local resonances to broad horizons. Sci Adv 2:e1501595. doi:10.1126/sciadv.1501595 CrossRef Ma G, Sheng P (2016) Acoustic metamaterials: from local resonances to broad horizons. Sci Adv 2:e1501595. doi:10.1126/sciadv.1501595 CrossRef
go back to reference Ma G, Yang M, Xiao S, Yang Z, Sheng P (2014) Acoustic metasurface with hybrid resonances. Nat Mater 13:873–878 CrossRef Ma G, Yang M, Xiao S, Yang Z, Sheng P (2014) Acoustic metasurface with hybrid resonances. Nat Mater 13:873–878 CrossRef
go back to reference Maa D-Y (1998) Potential of microperforated panel absorber. J Acoust Soc Am 104:2861–2866 CrossRef Maa D-Y (1998) Potential of microperforated panel absorber. J Acoust Soc Am 104:2861–2866 CrossRef
go back to reference Norris AN (2015) Acoustic cloaking. Acoust Today 11(1):38–46 Norris AN (2015) Acoustic cloaking. Acoust Today 11(1):38–46
go back to reference Pierre J, Dollet B, Leroy V (2014) Resonant acoustic propagation and negative density in liquid foams. Phys Rev Lett 112:148307 CrossRef Pierre J, Dollet B, Leroy V (2014) Resonant acoustic propagation and negative density in liquid foams. Phys Rev Lett 112:148307 CrossRef
go back to reference Popa B-I, Cummer SA (2014) Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat Commun 5:3398 CrossRef Popa B-I, Cummer SA (2014) Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat Commun 5:3398 CrossRef
go back to reference Wang Q, Yang Y, Ni X, Xu Y-L, Sun X-C, Chen Z-G, Feng L, Liu X-P, Lu M-H, Chen Y-F (2015) Acoustic asymmetric transmission based on time-dependent dynamical scattering. Sci Rep 5:10880 CrossRef Wang Q, Yang Y, Ni X, Xu Y-L, Sun X-C, Chen Z-G, Feng L, Liu X-P, Lu M-H, Chen Y-F (2015) Acoustic asymmetric transmission based on time-dependent dynamical scattering. Sci Rep 5:10880 CrossRef
go back to reference Xiao S, Ma G, Li Y, Yang Z, Sheng P (2015) Active control of membrane-type acoustic metamaterial by electric field. Appl Phys Lett 106:091904 CrossRef Xiao S, Ma G, Li Y, Yang Z, Sheng P (2015) Active control of membrane-type acoustic metamaterial by electric field. Appl Phys Lett 106:091904 CrossRef
go back to reference Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal FJ (2011) A holey structured metamaterial for acoustic deep-subwavelength imaging. Nat Phys 7:52–55 CrossRef Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal FJ (2011) A holey structured metamaterial for acoustic deep-subwavelength imaging. Nat Phys 7:52–55 CrossRef
go back to reference Zigoneanu L, Popa BI, Cummer SA (2014) Three-dimensional broadband omnidirectional acoustic ground cloak. Nat Mater 13:352–355 CrossRef Zigoneanu L, Popa BI, Cummer SA (2014) Three-dimensional broadband omnidirectional acoustic ground cloak. Nat Mater 13:352–355 CrossRef
Metadata
Title
Acoustic Metamaterials and Metadevices
Author
Xingcun Colin Tong
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-66044-8_10