Skip to main content
Top

2021 | OriginalPaper | Chapter

2. Acoustic Wave Propagation in an Elliptical Cylindrical Waveguide

Author : Akhilesh Mimani, PhD

Published in: Acoustic Analysis and Design of Short Elliptical End-Chamber Mufflers

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter begins with the three-dimensional (3-D) Helmholtz equation governing acoustic wave propagation in an infinite rigid-wall elliptical cylindrical waveguide carrying a uniform mean flow. The 3-D acoustic pressure field is obtained as modal summation of rigid-wall transverse modes in terms of the angular and radial Mathieu functions and complex exponentials. A well-known algorithm is presented for computing the expansion coefficients of even and odd angular Mathieu functions based on a set of infinite recurrence relations formulated as an algebraic eigenvalue problem. The modified or radial Mathieu functions are computed using a rapidly converging series of products of Bessel function. Rigid-wall condition is imposed at the elliptical boundaries by setting the derivative of modified Mathieu functions to zero, and root-bracketing in conjunction with the bisection method is used to numerically compute its parametric zeros q. The corresponding non-dimensional resonance frequencies of the transverse (rigid-wall) radial, even and odd circumferential/cross-modes of the elliptical waveguide are tabulated for aspect-ratios ranging from \(D_{2} /D_{1} = 0.01\,{\text{to}}\,1.0\). The tables show that for a highly eccentric ellipse, i.e., \(e \to 1\) (small aspect-ratio), the resonance frequencies of the even modes are significantly smaller than those of its odd counterpart. With an increase in aspect-ratio, the resonance frequencies of odd modes gradually approach those of the even modes, and for ellipse with \(e \to 0{\text{ or }}D_{2} /D_{1} \to 1\) the even and odd modes coalesce to the circular duct mode. The mode shapes corresponding to the first few radial, even and odd modes are presented for a few aspect-ratios whereby one can visualize changes in modal pressure distribution as the ellipse approaches a circle. Development of interpolation polynomials which facilitates an easy evaluation of the resonance frequencies for a given mode type is a useful outcome in engineering acoustics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference E. Mathieu, Memoire sur le movement vibratoire d’une membrane de forme elliptique. J. Math. Pures Appl. 13, 137 (1868)MATH E. Mathieu, Memoire sur le movement vibratoire d’une membrane de forme elliptique. J. Math. Pures Appl. 13, 137 (1868)MATH
2.
go back to reference E. Heine, Handbuch der Kugelfunktionen, 2 Vols. (1878/1881) E. Heine, Handbuch der Kugelfunktionen, 2 Vols. (1878/1881)
3.
go back to reference G. Floquet, Sur les equations differentielles lineaires. Ann. De l’Ecole Normale Superieure 12, 47 (1883)CrossRef G. Floquet, Sur les equations differentielles lineaires. Ann. De l’Ecole Normale Superieure 12, 47 (1883)CrossRef
5.
go back to reference N.W. McLachlan, Theory and Application of Mathieu Functions (Oxford University Press, London, 1947).MATH N.W. McLachlan, Theory and Application of Mathieu Functions (Oxford University Press, London, 1947).MATH
6.
go back to reference J. Meixner, F.W. Schäfke, Mathieusche Funktionen Und Sphäroidfunktionen (Springer-Verlag, Berlin, 1954).CrossRef J. Meixner, F.W. Schäfke, Mathieusche Funktionen Und Sphäroidfunktionen (Springer-Verlag, Berlin, 1954).CrossRef
7.
go back to reference M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, Washington, DC, 1972).MATH M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, Washington, DC, 1972).MATH
8.
go back to reference E.L. Ince, Researches into the characteristic numbers of the mathieu equation. Proc. Roy. Soc. Edim. 46, 20–29 (1926)MATH E.L. Ince, Researches into the characteristic numbers of the mathieu equation. Proc. Roy. Soc. Edim. 46, 20–29 (1926)MATH
10.
go back to reference S. Goldstein, On the asymptotic expansion of the characteristic number of the Mathieu equation. Proc. Roy. Soc. Edim. 49, 203–223 (1929) S. Goldstein, On the asymptotic expansion of the characteristic number of the Mathieu equation. Proc. Roy. Soc. Edim. 49, 203–223 (1929)
11.
go back to reference J. Canosa, Numerical solution of Mathieu’s equation. J. Comput. Phys. 7, 255–272 (1971)CrossRef J. Canosa, Numerical solution of Mathieu’s equation. J. Comput. Phys. 7, 255–272 (1971)CrossRef
12.
13.
go back to reference F.A. Alhargan, A complete method for the computations of Mathieu characteristic numbers of integer orders. SIAM Rev. 38, 239–255 (1996)MathSciNetCrossRef F.A. Alhargan, A complete method for the computations of Mathieu characteristic numbers of integer orders. SIAM Rev. 38, 239–255 (1996)MathSciNetCrossRef
14.
go back to reference F.A. Alhargan, Algorithms for the computation of all Mathieu functions of integer orders. ACM Trans. Math. Software 26, 390–407 (2000)CrossRef F.A. Alhargan, Algorithms for the computation of all Mathieu functions of integer orders. ACM Trans. Math. Software 26, 390–407 (2000)CrossRef
15.
go back to reference F.A. Alhargan, Algorithm 804: subroutines for the computation of Mathieu functions of integer orders. ACM Trans. Math. Softw. 26, 408–414 (2000)CrossRef F.A. Alhargan, Algorithm 804: subroutines for the computation of Mathieu functions of integer orders. ACM Trans. Math. Softw. 26, 408–414 (2000)CrossRef
16.
go back to reference D. Clemm, Algorithm 352 Characteristic values and associated solutions of Mathieu’s differential equation. Comm. ACM 12, 399–408 (1969)CrossRef D. Clemm, Algorithm 352 Characteristic values and associated solutions of Mathieu’s differential equation. Comm. ACM 12, 399–408 (1969)CrossRef
17.
go back to reference S.R. Rengarajan, J.E. Lewis, Mathieu functions of integral order and real arguments. IEEE Trans. Microw. Theory and Tech. MTT 28, 276–277 (1980) S.R. Rengarajan, J.E. Lewis, Mathieu functions of integral order and real arguments. IEEE Trans. Microw. Theory and Tech. MTT 28, 276–277 (1980)
18.
go back to reference N. Toyama, K. Shogen, Computation of the value of the even and odd Mathieu functions of order n for a given parameter s and an argument x. IEEE T. Antenn. Propag. AP 32, 537–539 (1994) N. Toyama, K. Shogen, Computation of the value of the even and odd Mathieu functions of order n for a given parameter s and an argument x. IEEE T. Antenn. Propag. AP 32, 537–539 (1994)
19.
go back to reference W. Leeb, Algorithm 537 Characteristic values of Mathieu’s differential equation. ACM Trans. Math. Soft. 5, 112–117 (1979)CrossRef W. Leeb, Algorithm 537 Characteristic values of Mathieu’s differential equation. ACM Trans. Math. Soft. 5, 112–117 (1979)CrossRef
20.
go back to reference R.B. Shirts, Algorithm 721 MTIEU1 and MTIEU2: Two subroutines to compute eigenvalues and solutions to Mathieu’s differential equation for non-integer and integer order. ACM Trans. Math. Soft. 19, 391–406 (1993)CrossRef R.B. Shirts, Algorithm 721 MTIEU1 and MTIEU2: Two subroutines to compute eigenvalues and solutions to Mathieu’s differential equation for non-integer and integer order. ACM Trans. Math. Soft. 19, 391–406 (1993)CrossRef
21.
go back to reference J.J. Stamnes, B. Spjelkavik, New method for computing eigenfunctions (Mathieu functions) for scattering by elliptical cylinders. Pure Appl. Opt. 4, 251–262 (1995)CrossRef J.J. Stamnes, B. Spjelkavik, New method for computing eigenfunctions (Mathieu functions) for scattering by elliptical cylinders. Pure Appl. Opt. 4, 251–262 (1995)CrossRef
22.
go back to reference S. Zhang, J. Jin, Computation of Special Functions (Wiley, New York, 1996). S. Zhang, J. Jin, Computation of Special Functions (Wiley, New York, 1996).
23.
go back to reference C. Julio, Gutiérrez-Vega, Formal Analysis of the Propagation of Invariant Optical Fields in Elliptic Coordinates, Ph. D. Thesis, INAOE, México (20000 C. Julio, Gutiérrez-Vega, Formal Analysis of the Propagation of Invariant Optical Fields in Elliptic Coordinates, Ph. D. Thesis, INAOE, México (20000
26.
go back to reference G. Chen, P.J. Morris, J. Zhou, Visualization of special eigenmode shapes of a vibrating elliptical membrane. SIAM Rev. 36, 453–469 (1994)MathSciNetCrossRef G. Chen, P.J. Morris, J. Zhou, Visualization of special eigenmode shapes of a vibrating elliptical membrane. SIAM Rev. 36, 453–469 (1994)MathSciNetCrossRef
27.
go back to reference J.B. Keller, S.I. Rubinow, Asymptotic solution of eigenvalue problems. Ann. Phys. 9, 24–75 (1960)CrossRef J.B. Keller, S.I. Rubinow, Asymptotic solution of eigenvalue problems. Ann. Phys. 9, 24–75 (1960)CrossRef
28.
go back to reference J.C. Gutiérrez-Vega, R.M. Rodríguez-Dagnino, M.A. Meneses-Nava, S. Chávez-Cerda, Mathieu functions, a visual approach. Am. J. Phys. 71, 233–242 (2003)CrossRef J.C. Gutiérrez-Vega, R.M. Rodríguez-Dagnino, M.A. Meneses-Nava, S. Chávez-Cerda, Mathieu functions, a visual approach. Am. J. Phys. 71, 233–242 (2003)CrossRef
29.
go back to reference S. Ancey, A. Folacci, P. Gabrielli, Whispering-gallery modes and resonances of an elliptic cavity. J. Phys. A Math. Gen. 34, 1341–1359 (2001)MathSciNetCrossRef S. Ancey, A. Folacci, P. Gabrielli, Whispering-gallery modes and resonances of an elliptic cavity. J. Phys. A Math. Gen. 34, 1341–1359 (2001)MathSciNetCrossRef
30.
go back to reference L.D. Akulenko, S.V. Nesterov, Free vibrations of a homogeneous elliptic membrane. Mech. Solids 35, 153–162 (2000) L.D. Akulenko, S.V. Nesterov, Free vibrations of a homogeneous elliptic membrane. Mech. Solids 35, 153–162 (2000)
31.
go back to reference H.B. Wilson, R.W. Scharstein, Computing elliptic membrane high frequencies by Mathieu and Galerkin methods. J. Eng. Math. 57, 41–55 (2007)MathSciNetCrossRef H.B. Wilson, R.W. Scharstein, Computing elliptic membrane high frequencies by Mathieu and Galerkin methods. J. Eng. Math. 57, 41–55 (2007)MathSciNetCrossRef
32.
go back to reference L.J. Chu, Electromagnetic waves in elliptic hollow metal pipes of metal. J. Appl. Phys. 9, 583–591 (1938)CrossRef L.J. Chu, Electromagnetic waves in elliptic hollow metal pipes of metal. J. Appl. Phys. 9, 583–591 (1938)CrossRef
33.
go back to reference S.D. Daymond, The principal frequencies of vibrating systems with elliptic boundaries. J. Mech. Appl. Math. VIII, 361–372 (1955) S.D. Daymond, The principal frequencies of vibrating systems with elliptic boundaries. J. Mech. Appl. Math. VIII, 361–372 (1955)
34.
go back to reference J.G. Kretzschmar: Wave propagation in hollow conducting elliptical waveguides. IEEE Trans. Microw. Theory MTT 18 (1970) J.G. Kretzschmar: Wave propagation in hollow conducting elliptical waveguides. IEEE Trans. Microw. Theory MTT 18 (1970)
35.
go back to reference M.V. Lowson, S. Baskaran, Propagation of sound in elliptic ducts. J. Sound Vib. 38, 185–194 (1975)CrossRef M.V. Lowson, S. Baskaran, Propagation of sound in elliptic ducts. J. Sound Vib. 38, 185–194 (1975)CrossRef
36.
go back to reference F.D. Denia, J. Albelda, F.J. Fuenmayor, A.J. Torregrosa, Acoustic behaviour of elliptical chamber mufflers. J. Sound Vib. 241, 401–421 (2001) F.D. Denia, J. Albelda, F.J. Fuenmayor, A.J. Torregrosa, Acoustic behaviour of elliptical chamber mufflers. J. Sound Vib. 241, 401–421 (2001)
37.
go back to reference A. Mimani, M.L. Munjal, 3-D acoustic analysis of elliptical chamber mufflers having an end inlet and a side outlet: an impedance matrix approach. Wave Motion 49, 271–295 (2012)MathSciNetCrossRef A. Mimani, M.L. Munjal, 3-D acoustic analysis of elliptical chamber mufflers having an end inlet and a side outlet: an impedance matrix approach. Wave Motion 49, 271–295 (2012)MathSciNetCrossRef
38.
go back to reference A. Mimani, M.L. Munjal, Acoustic end-correction in a flow-reversal end chamber muffler: a semi-analytical approach. J. Comput. Acoust. 24, 1650004 (2016)MathSciNetCrossRef A. Mimani, M.L. Munjal, Acoustic end-correction in a flow-reversal end chamber muffler: a semi-analytical approach. J. Comput. Acoust. 24, 1650004 (2016)MathSciNetCrossRef
39.
go back to reference K. Hong, J. Kim, Natural mode analysis of hollow and annular elliptical cylindrical cavities. J. Sound Vib. 183, 327–351 (1995)CrossRef K. Hong, J. Kim, Natural mode analysis of hollow and annular elliptical cylindrical cavities. J. Sound Vib. 183, 327–351 (1995)CrossRef
40.
go back to reference W.M. Lee., Acoustic eigenproblems of elliptical cylindrical cavities with multiple elliptical cylinders by using the collocation multipole method. Int. J. Mech. Sci. 78, 203–214 (2014) W.M. Lee., Acoustic eigenproblems of elliptical cylindrical cavities with multiple elliptical cylinders by using the collocation multipole method. Int. J. Mech. Sci. 78, 203–214 (2014)
41.
go back to reference M.L. Munjal, Acoustics of Ducts and Mufflers , 2nd edn. (Wiley, Chichester, UK, 2014). M.L. Munjal, Acoustics of Ducts and Mufflers , 2nd edn. (Wiley, Chichester, UK, 2014).
42.
go back to reference D.T. Blackstock, Fundamentals of Physical Acoustics, Chap. 3 (John Wiley, New York, 2000) D.T. Blackstock, Fundamentals of Physical Acoustics, Chap. 3 (John Wiley, New York, 2000)
43.
go back to reference J.M.G.S. Oliveira, P.J.S. Gil, Sound propagation in acoustically lined elliptical ducts. J. Sound Vib. 333, 3743–3758 (2014)CrossRef J.M.G.S. Oliveira, P.J.S. Gil, Sound propagation in acoustically lined elliptical ducts. J. Sound Vib. 333, 3743–3758 (2014)CrossRef
44.
go back to reference M. Willatzen, L.C.L. Yan Voon, Flow-acoustic properties of elliptical-cylinder waveguides and enclosures. J. Phys. Conf. Ser. 52, 1–13 (2006) M. Willatzen, L.C.L. Yan Voon, Flow-acoustic properties of elliptical-cylinder waveguides and enclosures. J. Phys. Conf. Ser. 52, 1–13 (2006)
45.
go back to reference G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists (Academic Press Elsevier, London, 2005), pp. 869–879MATH G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists (Academic Press Elsevier, London, 2005), pp. 869–879MATH
46.
go back to reference E. Kreyszig, Advanced Engineering Mathematics, 10th edn. (John Wiley & Sons, New Jersey, USA, 2011).MATH E. Kreyszig, Advanced Engineering Mathematics, 10th edn. (John Wiley & Sons, New Jersey, USA, 2011).MATH
47.
go back to reference A. Sarkar, V.R. Sonti, Wave equations and solutions of in-vacuo and fluid-filled elliptical cylindrical shells. Int. J. Acoust. Vib. 14, 35–45 (2009) A. Sarkar, V.R. Sonti, Wave equations and solutions of in-vacuo and fluid-filled elliptical cylindrical shells. Int. J. Acoust. Vib. 14, 35–45 (2009)
48.
go back to reference S.W. Rienstra, B.J. Tester, An analytic Green’s function for a lined circular duct containing uniform mean flow. J. Sound Vib. 317, 994–1016 (2008)CrossRef S.W. Rienstra, B.J. Tester, An analytic Green’s function for a lined circular duct containing uniform mean flow. J. Sound Vib. 317, 994–1016 (2008)CrossRef
Metadata
Title
Acoustic Wave Propagation in an Elliptical Cylindrical Waveguide
Author
Akhilesh Mimani, PhD
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4828-9_2

Premium Partner