Skip to main content
Top

2016 | OriginalPaper | Chapter

3. Activation of Chemical Substrates in Green Chemistry

Authors : Angelo Albini, Stefano Protti

Published in: Paradigms in Green Chemistry and Technology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The stability and low polarization of organic molecules forces to use an aggressive chemical or heat to activate (one of) the reagent(s). Addition of an activator worsens the atom economy since spent reagents add to the waste, drastic conditions increase the energetic expenditure. Homogeneous and heterogeneous catalysis, phase transfer catalysis, bio- and photocatalysis, microwave activation, the use of non conventional solvents (supercritical solvents, ionic liquids) or solventless reactions are the means for obtaining a much more environment-friendly process. The application of such methods to various chemical processes is briefly reviewed according to the chemical transformation involved (redox processes, carbon-heteroatom and carbon-carbon bond forming processes), with regards both to commodities and fine chemistry products.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
This does not mean that transition metal catalysis has no role in green synthesis. To the contrary, green processes of this type have been reported (although the topic is barely mentioned here for brevity), but trace of metals have to be carefully eliminated, particularly for products used as drugs. See for example: Buchwald SL (2008) Cross coupling. Acc Chem Res. 41: 1439. Liu S, Xiao J (2007) Toward green catalytic synthesis-transition metal-catalyzed reactions in non-conventional media. J Mol Cat A: Chemistry. 270:1–43. Parmeggiani C, Cardona F (2012) Transition metal based catalysts in the aerobic oxidation of alcohols. Green Chem. 14: 547–564.
 
Literature
1.
go back to reference Albini A, Fagnoni M (2008) 1908 Giacomo Ciamician and the concept of green chemistry. ChemSusChem 1:63–66 Albini A, Fagnoni M (2008) 1908 Giacomo Ciamician and the concept of green chemistry. ChemSusChem 1:63–66
2.
go back to reference Lancaster M (2010) Green chemistry: an introductory text. Royal Chemical Society, London Lancaster M (2010) Green chemistry: an introductory text. Royal Chemical Society, London
3.
go back to reference Hoelderich WF (2000) Environmentally benign manufacturing of fine and intermediate chemicals. Cat Today 62:115–130CrossRef Hoelderich WF (2000) Environmentally benign manufacturing of fine and intermediate chemicals. Cat Today 62:115–130CrossRef
4.
go back to reference For review on the contribution of catalysis to green chemistry see: (a) Anastas PT, Kirchhoff MM, Williamson TC (2001) Catalysis as a foundational pillar of green chemistry. Appl Cat A 221:3–13. (b) Anastas PT, Bartlett LB, Kirchhoff MM, Williamson TC (2000) The role of catalysis in the design, development, and implementation of green chemistry. Cat Today 55:11–22. Sheldon R, Arends IWCE, Hanefeld U (2007) Green Chemistry and Catalysis. Wiley VCH, Germany For review on the contribution of catalysis to green chemistry see: (a) Anastas PT, Kirchhoff MM, Williamson TC (2001) Catalysis as a foundational pillar of green chemistry. Appl Cat A 221:3–13. (b) Anastas PT, Bartlett LB, Kirchhoff MM, Williamson TC (2000) The role of catalysis in the design, development, and implementation of green chemistry. Cat Today 55:11–22. Sheldon R, Arends IWCE, Hanefeld U (2007) Green Chemistry and Catalysis. Wiley VCH, Germany
5.
go back to reference Sheldon RA (1997) Catalysis: the key to waste minimization. J Chem Tech Biotechnol 68:381–388CrossRef Sheldon RA (1997) Catalysis: the key to waste minimization. J Chem Tech Biotechnol 68:381–388CrossRef
6.
go back to reference Sheldon RA (1999) Downing heterogeneous catalytic transformations for environmentally friendly production. Appl Catal A 189:163–183CrossRef Sheldon RA (1999) Downing heterogeneous catalytic transformations for environmentally friendly production. Appl Catal A 189:163–183CrossRef
7.
go back to reference See for reviews Climent MJ, Corma A, Iborra S (2011) Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem Rev 111:1072–1133. Hattori, H (2001) Solid base catalysts: generation of basic sites and application to organic synthesis. Appl Cat A: General 222:247–259 See for reviews Climent MJ, Corma A, Iborra S (2011) Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem Rev 111:1072–1133. Hattori, H (2001) Solid base catalysts: generation of basic sites and application to organic synthesis. Appl Cat A: General 222:247–259
8.
go back to reference Pollet P, Hart RJ, Eckert C A, Liotta CL (2010) Organic aqueous tunable solvents (OATS): a vehicle for coupling reactions and separations. Acc Chem Res 43:1237–1245 Pollet P, Hart RJ, Eckert C A, Liotta CL (2010) Organic aqueous tunable solvents (OATS): a vehicle for coupling reactions and separations. Acc Chem Res 43:1237–1245
9.
go back to reference Vincent JM (2012) Fluorous catalysis: from the origin to recent advances. Topics Curr Chem 308:153–174CrossRef Vincent JM (2012) Fluorous catalysis: from the origin to recent advances. Topics Curr Chem 308:153–174CrossRef
10.
go back to reference Dyson PJ (2004) Biphasic synthesis. In McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 1, pp 689–695 Dyson PJ (2004) Biphasic synthesis. In McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 1, pp 689–695
11.
go back to reference Nelson A (1999) Asymmetric phase-transfer catalysis. Angew Chem Int Ed 38:1583–1585. Shirakawa S, Maruoka K (2013) Recent developments in asymmetric phase-transfer reactions. Angew Chem Int Ed 52:4312–4348 Nelson A (1999) Asymmetric phase-transfer catalysis. Angew Chem Int Ed 38:1583–1585. Shirakawa S, Maruoka K (2013) Recent developments in asymmetric phase-transfer reactions. Angew Chem Int Ed 52:4312–4348
12.
go back to reference Peach J, Eastoe J (2014) Supercritical carbon dioxide: a solvent like no other. Beilstein J Org Chem 10:1878–1895CrossRef Peach J, Eastoe J (2014) Supercritical carbon dioxide: a solvent like no other. Beilstein J Org Chem 10:1878–1895CrossRef
13.
go back to reference Jindal R, Sablok A (2015) Preparation and applications of room temperature ionic liquids in organic synthesis: a review on recent efforts. Curr Green Chem 2:135–155CrossRef Jindal R, Sablok A (2015) Preparation and applications of room temperature ionic liquids in organic synthesis: a review on recent efforts. Curr Green Chem 2:135–155CrossRef
14.
go back to reference Ran N, Zhao L, Chen Z, Tao J (2008) Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green Chem 10:361–372. Gupta P, Mahajan A (2015) Green chemistry approaches as sustainable alternatives to conventional strategies in the pharmaceutical industry. RSC Adv 5:26686–26705 Ran N, Zhao L, Chen Z, Tao J (2008) Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green Chem 10:361–372. Gupta P,  Mahajan A (2015) Green chemistry approaches as sustainable alternatives to conventional strategies in the pharmaceutical industry. RSC Adv 5:26686–26705
15.
go back to reference See for reviews Wohlgemuth R (2010) Biocatalysis-key to sustainable industrial chemistry. Curr Opin Biotech 21:713–724; Tao J, Xu J-H (2009) Biocatalysis in development of green pharmaceutical processes. Curr Opin Chem Biol 13:43–50. Ran N, Zhao L (eds) (2011) Biocatalysis for green chemistry and chemical processes development. Wiley, Hoboken, New Jersey. Patel RN (2013) Biocatalytic synthesis of chiral alcohols and amino acids for development of pharmaceuticals. Biomolecules 3:741–777 See for reviews Wohlgemuth R (2010) Biocatalysis-key to sustainable industrial chemistry. Curr Opin Biotech 21:713–724; Tao J, Xu J-H (2009) Biocatalysis in development of green pharmaceutical processes. Curr Opin Chem Biol 13:43–50. Ran N, Zhao L (eds) (2011) Biocatalysis for green chemistry and chemical processes development. Wiley, Hoboken, New Jersey. Patel RN (2013) Biocatalytic synthesis of chiral alcohols and amino acids for development of pharmaceuticals. Biomolecules 3:741–777
16.
go back to reference (a) Nüchter M, Müller U, Ondruschka B, Tied A, Lautenschläger W (2003) Microwave assisted synthesis. A critical technology overview. Chem Eng Technol 26:1207–1216 (b) Lidström P, Tieney J, Wathey B, Westmann J (2001) Microwave organic synthesis. A review. Tetrahedron 57:9225–9283. (c) Polshettiwar V, Varma RS (2008) Aqueous microwave chemistry: a clean and green synthetic tool for rapid drug discovery. Chem Soc Rev 37:1546–1557. (d) Gronnow MJ, White RJ, Clark JH, Macquarrie DJ (2005) Energy efficiency in chemical reactions: a comparative study of different reaction techniques. Org Proc Res Dev 9:516–518. (e) Roberts BA, Strauss CR (2005) Toward rapid, “green”, predictable microwave-assisted synthesis. Acc Chem Res 38:653–661 (a) Nüchter M, Müller U, Ondruschka B, Tied A, Lautenschläger W (2003) Microwave assisted synthesis. A critical technology overview. Chem Eng Technol 26:1207–1216 (b) Lidström P, Tieney J, Wathey B, Westmann J (2001) Microwave organic synthesis. A review. Tetrahedron 57:9225–9283. (c) Polshettiwar V, Varma RS (2008) Aqueous microwave chemistry: a clean and green synthetic tool for rapid drug discovery. Chem Soc Rev 37:1546–1557. (d) Gronnow MJ, White RJ, Clark JH, Macquarrie DJ (2005) Energy efficiency in chemical reactions: a comparative study of different reaction techniques. Org Proc Res Dev 9:516–518. (e) Roberts BA, Strauss CR (2005) Toward rapid, “green”, predictable microwave-assisted synthesis. Acc Chem Res 38:653–661
17.
go back to reference Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21. Protti S, Albini A Serpone N (2014) Photocatalytic generation of solar fuels from the reduction of H2O and CO2: a look at the patent literature. Phys Chem Chem Phys 16:19790–19827 Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21. Protti S, Albini A Serpone N (2014) Photocatalytic generation of solar fuels from the reduction of H2O and CO2: a look at the patent literature. Phys Chem Chem Phys 16:19790–19827
18.
go back to reference Ravelli D, Dondi D, Fagnoni M, Albini A (2009) Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev 38:1999–2011CrossRef Ravelli D, Dondi D, Fagnoni M, Albini A (2009) Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev 38:1999–2011CrossRef
19.
go back to reference Sato K, Aoki M, Noyori R (1998) A “green” route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 281:1646–1647CrossRef Sato K, Aoki M, Noyori R (1998) A “green” route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 281:1646–1647CrossRef
20.
go back to reference Noyori R, Aoki M, Sato, K (2003) Green oxidation with aqueous hydrogen peroxide. Chem Commun 16:1977–1986 Noyori R, Aoki M, Sato, K (2003) Green oxidation with aqueous hydrogen peroxide. Chem Commun 16:1977–1986
21.
go back to reference Kinen CO, Rossi LI, de Rossi RH (2009) The development of an environmentally benign sulfide oxidation procedure and its assessment by green chemistry metrics. Green Chem 11:223–228CrossRef Kinen CO, Rossi LI, de Rossi RH (2009) The development of an environmentally benign sulfide oxidation procedure and its assessment by green chemistry metrics. Green Chem 11:223–228CrossRef
22.
go back to reference Taramasso M, Perego G, Notari B (1984) Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US Patent 4410501 A Taramasso M, Perego G, Notari B (1984) Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US Patent 4410501 A
23.
go back to reference Thiele GF, Roland E (1997) Propylene epoxidation with hydrogen peroxide and titanium silicalite catalyst: activity, deactivation and regeneration of the catalyst. J Mol Cat A: Chem 117:351–356CrossRef Thiele GF, Roland E (1997) Propylene epoxidation with hydrogen peroxide and titanium silicalite catalyst: activity, deactivation and regeneration of the catalyst. J Mol Cat A: Chem 117:351–356CrossRef
24.
go back to reference Schenck GO, Ziegler (1944) Die Synthese des Ascaridols. Naturwissenschaft 32:157 Schenck GO, Ziegler (1944) Die Synthese des Ascaridols. Naturwissenschaft 32:157
25.
go back to reference Schenk GO, Ohloff G, Klein E (1968) Mixtures of oxygenated acyclic terpenes. US Patent 3,382,276 Schenk GO, Ohloff G, Klein E (1968) Mixtures of oxygenated acyclic terpenes. US Patent 3,382,276
26.
go back to reference Ravelli D, Protti S, Neri P, Fagnoni M, Albini A (2011) Photochemical technologies assessed: the case of rose oxide. Green Chem 13:1876–1884CrossRef Ravelli D, Protti S, Neri P, Fagnoni M, Albini A (2011) Photochemical technologies assessed: the case of rose oxide. Green Chem 13:1876–1884CrossRef
27.
go back to reference Varma RS (1997) The presidential green chemistry challenge awards program, summary of 1997 award entries and recipients, EPA744-S-97-001. U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, p 9 Varma RS (1997) The presidential green chemistry challenge awards program, summary of 1997 award entries and recipients, EPA744-S-97-001. U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, p 9
29.
go back to reference Haggiage E, Coyle EE, Joyce K, Oelgemoeller M (2009) Green photochemistry: solar chemical synthesis of 5-amido-1,4-naphthoquinones. Green Chem 11:318–321CrossRef Haggiage E, Coyle EE, Joyce K, Oelgemoeller M (2009) Green photochemistry: solar chemical synthesis of 5-amido-1,4-naphthoquinones. Green Chem 11:318–321CrossRef
30.
go back to reference Le Bars J, Dakka J, Sheldon RA (1996) Ammoximation of cyclohexanone and hydroxyaromatic ketones over titanium molecular sieves. Appl Catal A: General 136:69–80CrossRef Le Bars J, Dakka J, Sheldon RA (1996) Ammoximation of cyclohexanone and hydroxyaromatic ketones over titanium molecular sieves. Appl Catal A: General 136:69–80CrossRef
31.
go back to reference Sheldon RA (2000) Atom efficiency and catalysis in organic synthesis. Pure Appl Chem 72:1233–1246CrossRef Sheldon RA (2000) Atom efficiency and catalysis in organic synthesis. Pure Appl Chem 72:1233–1246CrossRef
32.
go back to reference Stewart JD, Reed KW, Martinez CA, Zhu J, Chen G, Kayser MM (1998) Recombinant baker’s yeast as a whole-cell catalyst for asymmetric Baeyer–Villiger oxidations. J Am Chem Soc 120:3541–3547CrossRef Stewart JD, Reed KW, Martinez CA, Zhu J, Chen G, Kayser MM (1998) Recombinant baker’s yeast as a whole-cell catalyst for asymmetric Baeyer–Villiger oxidations. J Am Chem Soc 120:3541–3547CrossRef
33.
go back to reference Kohlmann C, Leuchs S, Greiner L, Leitner W (2011) Continuous biocatalytic synthesis of (R)-2-octanol with integrated product separation. Green Chem 13:1430–1436CrossRef Kohlmann C, Leuchs S, Greiner L, Leitner W (2011) Continuous biocatalytic synthesis of (R)-2-octanol with integrated product separation. Green Chem 13:1430–1436CrossRef
34.
go back to reference Wu X, Wang J, Chen C, Liu N, Chen Y (2009) Enantioselective synthesis of ethyl (S)-2-hydroxy-4-phenylbutyrate by recombinant diketoreductase. Tetrahedron Asymmetry 20:2504–2509CrossRef Wu X, Wang J, Chen C, Liu N, Chen Y (2009) Enantioselective synthesis of ethyl (S)-2-hydroxy-4-phenylbutyrate by recombinant diketoreductase. Tetrahedron Asymmetry 20:2504–2509CrossRef
35.
go back to reference Easwar S, Argade NP (2003) Amano PS-catalysed enantioselective acylation of (±)-α-methyl-1,3-benzodioxole-5-ethanol: an efficient resolution of chiral intermediates of the remarkable antiepileptic drug candidate, (−)-talampanel Tetrahedron Asym 14:333–337 (c) Nakamura K, Yamanaka R, Matsuda T, Harada T (2003) Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymm 14:2659–2681 Easwar S, Argade NP (2003) Amano PS-catalysed enantioselective acylation of (±)-α-methyl-1,3-benzodioxole-5-ethanol: an efficient resolution of chiral intermediates of the remarkable antiepileptic drug candidate, (−)-talampanel Tetrahedron Asym 14:333–337 (c) Nakamura K, Yamanaka R, Matsuda T, Harada T (2003) Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymm 14:2659–2681
36.
go back to reference Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–309CrossRef Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–309CrossRef
37.
go back to reference Hansen KB, Hsiao Y, Xu F, Rivera N, Clausen A, Kubryk M, Krska S, Rosner T, Simmons B, Balsells J, Ikemoto N, Sun Y, Spindler F, Malan C, Grabowski EJJ, Armstrong JD III (2009) Highly efficient asymmetric synthesis of sitagliptin. J Am Chem Soc 131:8796–8804 Hansen KB, Hsiao Y, Xu F, Rivera N, Clausen A, Kubryk M, Krska S, Rosner T, Simmons B, Balsells J, Ikemoto N, Sun Y, Spindler F, Malan C, Grabowski EJJ, Armstrong JD III (2009) Highly efficient asymmetric synthesis of sitagliptin. J Am Chem Soc 131:8796–8804
38.
go back to reference (a) Adams JP, Alder CM, Andrews I, Bullion AM, Campbell-Crawford M, Darcy MG, Hayler JD, Henderson RK, Oare CA, Pendrak I, Redman AM, Shuster LE, Sneddon HF, Walker MD (2013) Development of GSK’s reagent guides—embedding sustainability into reagent selection. Green Chem 15:1542–1549. An analogous scale has been compiled for the choice of solvents (see Fig 2 in Ch 5). (b) Clark JH (2002) Solid acids for green chemistry. Acc Chem Res 35:791–797 (a) Adams JP, Alder CM, Andrews I, Bullion AM, Campbell-Crawford M, Darcy MG, Hayler JD, Henderson RK, Oare CA, Pendrak I, Redman AM, Shuster LE, Sneddon HF, Walker MD (2013) Development of GSK’s reagent guides—embedding sustainability into reagent selection. Green Chem 15:1542–1549. An analogous scale has been compiled for the choice of solvents (see Fig 2 in Ch 5). (b) Clark JH (2002) Solid acids for green chemistry. Acc Chem Res 35:791–797
39.
go back to reference Comerford JW, Clark JH, Macquarrie DJ, Breeden SW (2009) Clean, reusable and low cost heterogeneous catalyst for amide synthesis. Chem Comm 18:2562–2564 Comerford JW, Clark JH, Macquarrie DJ, Breeden SW (2009) Clean, reusable and low cost heterogeneous catalyst for amide synthesis. Chem Comm 18:2562–2564
40.
go back to reference Caldwell N, Jamieson C, Simpson I, Watson AJB (2013) Development of a sustainable catalytic ester amidation process. ACS Sustain Chem Eng 1:1339–1344CrossRef Caldwell N, Jamieson C, Simpson I, Watson AJB (2013) Development of a sustainable catalytic ester amidation process. ACS Sustain Chem Eng 1:1339–1344CrossRef
41.
go back to reference Das VK, Devib RR, Thakur AJ (2013) Recyclable, highly efficient and low cost nano-MgO for amide synthesis under SFRC: a convenient and greener ‘NOSE’ approach. Appl Cat A: Gen 456:118–125CrossRef Das VK, Devib RR, Thakur AJ (2013) Recyclable, highly efficient and low cost nano-MgO for amide synthesis under SFRC: a convenient and greener ‘NOSE’ approach. Appl Cat A: Gen 456:118–125CrossRef
42.
go back to reference Verweij J, de Vroom E (1993) Industrial transformations of penicillins and cephalosporins. Recl Trav Chim Pays-Bas 112:66–81CrossRef Verweij J, de Vroom E (1993) Industrial transformations of penicillins and cephalosporins. Recl Trav Chim Pays-Bas 112:66–81CrossRef
43.
go back to reference Bruggink A, Roos EC, de Vroom E (1998) Penicillin acylase in the industrial production of β-lactam antibiotics. Org Proc Res Dev 2:128–133CrossRef Bruggink A, Roos EC, de Vroom E (1998) Penicillin acylase in the industrial production of β-lactam antibiotics. Org Proc Res Dev 2:128–133CrossRef
44.
go back to reference Arroyo M, de la Mata I, Acebal C, Castillón MP (2003) Biotechnological applications of penicillin acylases: state-of-the-art. Appl Microbiol Biotechnol 60:507–514. Youshko MI, van Langen LM, de Vroom E, van Rantwijk F, Sheldon RA, Svedas, VK (2001) Highly efficient synthesis of ampicillin in an “Aqueous Solution-Precipitate” system: repetitive addition of substrates in a semicontinuous process. Biotech Bioengin 73:426–430. Wegman MA, Janssen MHA, van Rantwijk F, Sheldon RA (2001) Towards biocatalytic synthesis of ß-lactam antibiotics. Adv Synth Catal 343:559–576 Arroyo M, de la Mata I, Acebal C, Castillón MP (2003) Biotechnological applications of penicillin acylases: state-of-the-art. Appl Microbiol Biotechnol 60:507–514. Youshko MI, van Langen LM, de Vroom E, van Rantwijk F, Sheldon RA, Svedas, VK (2001) Highly efficient synthesis of ampicillin in an “Aqueous Solution-Precipitate” system: repetitive addition of substrates in a semicontinuous process. Biotech Bioengin 73:426–430. Wegman MA, Janssen MHA, van Rantwijk F, Sheldon RA (2001) Towards biocatalytic synthesis of ß-lactam antibiotics. Adv Synth Catal 343:559–576
45.
go back to reference Hölderich WH, Dahlhoff G, Ichihashi H, Sugita K (2003) Method for producing ε-caprolactam and reactor for the method. US Patent 6531595 B2 Hölderich WH, Dahlhoff G, Ichihashi H, Sugita K (2003) Method for producing ε-caprolactam and reactor for the method. US Patent 6531595 B2
46.
go back to reference Barnard TM, Vanier GS, Collins MJ Jr (2006) Scale-up of the green synthesis of azacycloalkanes and isoindolines under microwave irradiation. Org Proc Res Dev 10:1233–1237CrossRef Barnard TM, Vanier GS, Collins MJ Jr (2006) Scale-up of the green synthesis of azacycloalkanes and isoindolines under microwave irradiation. Org Proc Res Dev 10:1233–1237CrossRef
47.
go back to reference Ryu I, Tani A, Fukuyama T, Ravelli R, Montanaro S, Fagnoni (2013) Efficient C–H/C–N and C–H/C–CO–N conversion via decatungstate-photoinduced alkylation of diisopropyl azodicarboxylate. Org Lett 15:2554–2557 Ryu I, Tani A, Fukuyama T, Ravelli R, Montanaro S, Fagnoni (2013) Efficient C–H/C–N and C–H/C–CO–N conversion via decatungstate-photoinduced alkylation of diisopropyl azodicarboxylate. Org Lett 15:2554–2557
48.
go back to reference Paravidino M, Hanefeld U (2011) Enzymatic acylation: assessing the greenness of different acyl donors. Green Chem 13:2651–2657CrossRef Paravidino M, Hanefeld U (2011) Enzymatic acylation: assessing the greenness of different acyl donors. Green Chem 13:2651–2657CrossRef
49.
go back to reference Cabrera Z, Fernandez-Lorente G, Fernandez-Lafuente R, Palomo JM, Guisan JM (2009) Enhancement of Novozym-435 catalytic properties by physical or chemical modification. Process Biochem 44:226–231CrossRef Cabrera Z, Fernandez-Lorente G, Fernandez-Lafuente R, Palomo JM, Guisan JM (2009) Enhancement of Novozym-435 catalytic properties by physical or chemical modification. Process Biochem 44:226–231CrossRef
50.
go back to reference Korupp C, Weberskirch R, Muller JJ, Liese A, Hilterhaus L (2010) Scale-up of lipase-catalyzed polyester synthesis. Org Process Res Dev 14:1118–1124CrossRef Korupp C, Weberskirch R, Muller JJ, Liese A, Hilterhaus L (2010) Scale-up of lipase-catalyzed polyester synthesis. Org Process Res Dev 14:1118–1124CrossRef
51.
go back to reference Andraos JA (2012) Green metrics assessment of phosgene and phosgene-free syntheses of industrially important commodity chemicals. Pure Appl Chem 84:827–860 Andraos JA (2012) Green metrics assessment of phosgene and phosgene-free syntheses of industrially important commodity chemicals. Pure Appl Chem 84:827–860
52.
go back to reference Tundo P, Selva M, Marques CA (1996). In: Anastas PT, Williamson TC (eds) Green chemistry: designing chemistry for the environment, Ch. 7. American Chemical Society, Washington, DC, p 81 Tundo P, Selva M, Marques CA (1996). In: Anastas PT, Williamson TC (eds) Green chemistry: designing chemistry for the environment, Ch. 7. American Chemical Society, Washington, DC, p 81
53.
go back to reference Cooke M, Clark J, Breeden S (2009) Lewis acid catalysed microwave-assisted synthesis of diaryl sulfones and comparison of associated carbon dioxide emissions. J Mol Catalysis A: Chem 103:132–136CrossRef Cooke M, Clark J, Breeden S (2009) Lewis acid catalysed microwave-assisted synthesis of diaryl sulfones and comparison of associated carbon dioxide emissions. J Mol Catalysis A: Chem 103:132–136CrossRef
54.
55.
go back to reference Davis ME (1993) New vistas in zeolite and molecular sieve catalysis. Acc Chem Res 26:111–115CrossRef Davis ME (1993) New vistas in zeolite and molecular sieve catalysis. Acc Chem Res 26:111–115CrossRef
56.
go back to reference See for example Fong YY, Abdullah AZ, Ahmad AL, Bhatia S (2008) Development of functionalized zeolite membrane and its potential role as reactor combined separator for para-xylene production from xylene isomers. Chem Eng J 139:172–193 See for example Fong YY, Abdullah AZ, Ahmad AL, Bhatia S (2008) Development of functionalized zeolite membrane and its potential role as reactor combined separator for para-xylene production from xylene isomers. Chem Eng J 139:172–193
57.
go back to reference Hoefnagel AJ, van Bekkum H (1993) Direct Fries reaction of resorcinol with benzoic acids catalyzed by zeolite H-beta. Appl Catal A: Gen 97:87–102 Hoefnagel AJ, van Bekkum H (1993) Direct Fries reaction of resorcinol with benzoic acids catalyzed by zeolite H-beta. Appl Catal A: Gen 97:87–102
58.
go back to reference Yadav GD, Kamble SB (2009) Synthesis of carvacrol by Friedel–Crafts alkylation of o-cresol with isopropanol using superacidic catalyst UDCaT-5. J Chem Technol Biotechnol 84:1499–1508CrossRef Yadav GD, Kamble SB (2009) Synthesis of carvacrol by Friedel–Crafts alkylation of o-cresol with isopropanol using superacidic catalyst UDCaT-5. J Chem Technol Biotechnol 84:1499–1508CrossRef
59.
go back to reference Yadav GD, Kamble SB (2012) Atom efficient Friedel–Crafts acylation of toluene with propionic anhydride over solid mesoporous superacid UDCaT-5. Appl Cat A: Gen 433–434:265–274CrossRef Yadav GD, Kamble SB (2012) Atom efficient Friedel–Crafts acylation of toluene with propionic anhydride over solid mesoporous superacid UDCaT-5. Appl Cat A: Gen 433–434:265–274CrossRef
60.
go back to reference Ishihara K, Kubota M, Kurihara H, Yamamoto H (1996) Scandium trifluoromethanesulfonate as an extremely active Lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides. J Org Chem 61:4560–4567CrossRef Ishihara K, Kubota M, Kurihara H, Yamamoto H (1996) Scandium trifluoromethanesulfonate as an extremely active Lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides. J Org Chem 61:4560–4567CrossRef
61.
go back to reference Korea R, Srivastava R, Satpatib B (2015) Synthesis of industrially important aromatic and heterocyclic ketones using hierarchical ZSM-5 and beta zeolites. Appl Catal A: Gen 493:129–141CrossRef Korea R, Srivastava R, Satpatib B (2015) Synthesis of industrially important aromatic and heterocyclic ketones using hierarchical ZSM-5 and beta zeolites. Appl Catal A: Gen 493:129–141CrossRef
62.
go back to reference Chaube VD, Moreau P, Finiels A, Ramaswamy AV, Singh AP (2002) A novel single step selective synthesis of 4-hydroxybenzophenone (4-HBP) using zeolite H-beta. Cat Lett 79:89–94CrossRef Chaube VD, Moreau P, Finiels A, Ramaswamy AV, Singh AP (2002) A novel single step selective synthesis of 4-hydroxybenzophenone (4-HBP) using zeolite H-beta. Cat Lett 79:89–94CrossRef
63.
go back to reference See for reviews: Farrusseng D, Aguado S, Pinel C (2009) Metal-organic frameworks: opportunities for catalysis. Angew Chem Int Ed 48:7502–7513. Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450–1459 See for reviews: Farrusseng D, Aguado S, Pinel C (2009) Metal-organic frameworks: opportunities for catalysis. Angew Chem Int Ed 48:7502–7513. Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450–1459
64.
go back to reference Shi T, Guo Z, Yu H, Xie J, Zhong Y, Zhua W (2013) Atom-economic synthesis of optically active warfarin anticoagulant over a chiral MOF organocatalyst. Adv Synth Cat 355:2538–2543CrossRef Shi T, Guo Z, Yu H, Xie J, Zhong Y, Zhua W (2013) Atom-economic synthesis of optically active warfarin anticoagulant over a chiral MOF organocatalyst. Adv Synth Cat 355:2538–2543CrossRef
65.
go back to reference Climent MJ, Corma A, Iborra S, Mifsud M, Velty A (2010) New one-pot multistep process with multifunctional catalysts: decreasing the E-factor in the synthesis of fine chemicals. Green Chem 12:99–107CrossRef Climent MJ, Corma A, Iborra S, Mifsud M, Velty A (2010) New one-pot multistep process with multifunctional catalysts: decreasing the E-factor in the synthesis of fine chemicals. Green Chem 12:99–107CrossRef
66.
go back to reference For other examples related to the use of multifunctional catalysts see Climent MJ, Corma A, Iborra S, Sabater MJ (2014) Heterogeneous catalysis for tandem reactions. ACS Catal 4:870–891 For other examples related to the use of multifunctional catalysts see Climent MJ, Corma A, Iborra S, Sabater MJ (2014) Heterogeneous catalysis for tandem reactions. ACS Catal 4:870–891
67.
go back to reference Tanabea K, Hoelderich WF (1999) Industrial application of solid acid-base catalysts. Appl Catal A: Gen 181:399–434CrossRef Tanabea K, Hoelderich WF (1999) Industrial application of solid acid-base catalysts. Appl Catal A: Gen 181:399–434CrossRef
68.
go back to reference Palmieri A, Gabrielli S, Ballini R (2013) Low impact synthesis of β-nitroacrylates under fully heterogeneous conditions. Green Chem 15:2344–2348 Palmieri A, Gabrielli S, Ballini R (2013) Low impact synthesis of β-nitroacrylates under fully heterogeneous conditions. Green Chem 15:2344–2348
69.
go back to reference Fringuelli D, Lanari D, Pizzo F, Vaccaro L (2010) An E-factor minimized protocol for the preparation of methyl β-hydroxy esters. Green Chem 12:1301–1305CrossRef Fringuelli D, Lanari D, Pizzo F, Vaccaro L (2010) An E-factor minimized protocol for the preparation of methyl β-hydroxy esters. Green Chem 12:1301–1305CrossRef
70.
go back to reference Kobayashi S, Manabe K (2000) Green Lewis acid catalysis in organic synthesis. Pure Appl Chem 72:1373–1380. Kobayashi S, Manabe K (2002) Development of novel Lewis acid catalysts for selective organic reactions in aqueous media. Acc Chem Res 35:209–217 Kobayashi S, Manabe K (2000) Green Lewis acid catalysis in organic synthesis. Pure Appl Chem 72:1373–1380. Kobayashi S, Manabe K (2002) Development of novel Lewis acid catalysts for selective organic reactions in aqueous media. Acc Chem Res 35:209–217
71.
go back to reference Kobayashi S, Hachiya I (1994) Lanthanide triflates as water-tolerant Lewis acids activation of commercial formaldehyde solution and use in the aldol reaction of silyl enol ethers with aldehydes in aqueous media. J Org Chem 59:3590–3596CrossRef Kobayashi S, Hachiya I (1994) Lanthanide triflates as water-tolerant Lewis acids activation of commercial formaldehyde solution and use in the aldol reaction of silyl enol ethers with aldehydes in aqueous media. J Org Chem 59:3590–3596CrossRef
72.
go back to reference Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, Ma SK, Chung LM, Ching L, Tam S, Muley S, Grate J, Gruber J, Whitman JC, Sheldon RA, Huisman GW (2007) Improving catalytic function by ProSAR-driven enzyme evolution. Nat Biotech 25:338–344CrossRef Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, Ma SK, Chung LM, Ching L, Tam S, Muley S, Grate J, Gruber J, Whitman JC, Sheldon RA, Huisman GW (2007) Improving catalytic function by ProSAR-driven enzyme evolution. Nat Biotech 25:338–344CrossRef
73.
go back to reference Das VK, Borah M, Thakur AJ (2013) Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener “nanoparticle-catalyzed organic synthesis enhancement” approach. J Org Chem 78:3361–3366CrossRef Das VK, Borah M, Thakur AJ (2013) Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener “nanoparticle-catalyzed organic synthesis enhancement” approach. J Org Chem 78:3361–3366CrossRef
74.
go back to reference Hendricks JD, Mott GN (1992) Method for producing ibuprofen. Hoechst Celansese Corporation, US Patent 5 166 418. Process for the carbonylation of 1-(4-isobutylphenyl) ethanol in the presence of ibuprofen. Eur Patent Appl, EP 460 905, 1991, Chem Abstr, 116 (1992) 83378 Hendricks JD, Mott GN (1992) Method for producing ibuprofen. Hoechst Celansese Corporation, US Patent 5 166 418. Process for the carbonylation of 1-(4-isobutylphenyl) ethanol in the presence of ibuprofen. Eur Patent Appl, EP 460 905, 1991, Chem Abstr, 116 (1992) 83378
75.
go back to reference Qiu Z, He Y, Zheng D, Liu F (2005) Study on the synthesis of phenylacetic acid by carbonylation of benzyl chloride under normal pressure. J Nat Gas Chem 14:40–46. See also Cornils D, Herrmann WA (eds) (2006) Aqueous-phase organometallic catalysis: concepts and applications. Wiley VCH, Germany Qiu Z, He Y, Zheng D, Liu F (2005) Study on the synthesis of phenylacetic acid by carbonylation of benzyl chloride under normal pressure. J Nat Gas Chem 14:40–46. See also Cornils D, Herrmann WA (eds) (2006) Aqueous-phase organometallic catalysis: concepts and applications. Wiley VCH, Germany
76.
go back to reference Evans D, Osborn JA, Wilkinson G (1968) Hydroformylation of alkenes by use of rhodium complex catalysts. J Chem Soc A 3133–3142 Evans D, Osborn JA, Wilkinson G (1968) Hydroformylation of alkenes by use of rhodium complex catalysts. J Chem Soc A 3133–3142
77.
go back to reference Bohnen HW, Cornils B (2002) Hydroformylation of alkenes: an industrial view of the status and importance. Adv Catal 47:1–64. Cornils B (1998) Industrial aqueous biphasic catalysis: status and directions. Org Proc Res Dev 2:121–127 Bohnen HW, Cornils B (2002) Hydroformylation of alkenes: an industrial view of the status and importance. Adv Catal 47:1–64. Cornils B (1998) Industrial aqueous biphasic catalysis: status and directions. Org Proc Res Dev 2:121–127
78.
79.
go back to reference Perperi E, Huang Y, Angeli P, Manos C, Mathison CR, Cole-Hamilton DJ, Adams DJ, Hope EG (2004) The design of a continuous reactor for fluorous biphasic reactions under pressure and its use in alkene hydroformylation. Dalton Trans 14:2062–2064. Adams DJ, Bennett JA, Cole-Hamilton DJ, Hope DJ, Hopewell J, Kight J, Pogorzelec P, Stuart AM (2005) Rhodium catalyzed hydroformylation of alkenes using highly fluorophilic phosphines. Dalton Trans 24:3862–3867. Bach I, Cole-Hamilton DJ (1998) Hydroformylation of hex-1-ene in supercritical carbon dioxide catalyzed by rhodium trialkylphosphine complexes. Chem Commun 14:1463–1464 Perperi E, Huang Y, Angeli P, Manos C, Mathison CR, Cole-Hamilton DJ, Adams DJ, Hope EG (2004) The design of a continuous reactor for fluorous biphasic reactions under pressure and its use in alkene hydroformylation. Dalton Trans 14:2062–2064. Adams DJ, Bennett JA, Cole-Hamilton DJ, Hope DJ, Hopewell J, Kight J, Pogorzelec P, Stuart AM (2005) Rhodium catalyzed hydroformylation of alkenes using highly fluorophilic phosphines. Dalton Trans 24:3862–3867. Bach I, Cole-Hamilton DJ (1998) Hydroformylation of hex-1-ene in supercritical carbon dioxide catalyzed by rhodium trialkylphosphine complexes. Chem Commun 14:1463–1464
80.
go back to reference Webb PW, Kunene TE, Cole-Hamilton DJ (2005) Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids. Green Chem 7:373–379CrossRef Webb PW, Kunene TE, Cole-Hamilton DJ (2005) Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids. Green Chem 7:373–379CrossRef
81.
go back to reference Sellin MF, Bach I, Webster JM, Montilla F, Rosa V, Avilés T, Poliakoff M, Cole-Hamilton DJ (2002) Hydroformylation of alkenes in supercritical carbon dioxide catalysed by rhodium trialkylphosphine complexes. J Chem Soc Dalton Trans 4569–4576 Sellin MF, Bach I, Webster JM, Montilla F, Rosa V, Avilés T, Poliakoff M, Cole-Hamilton DJ (2002) Hydroformylation of alkenes in supercritical carbon dioxide catalysed by rhodium trialkylphosphine complexes. J Chem Soc Dalton Trans 4569–4576
82.
go back to reference Chauvin Y, Mussmann L, Olivier H (1995) A novel class of versatile solvents for two-phase catalysis: hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazolium salts. Angew Chem Int Ed Eng 34:2698–2700CrossRef Chauvin Y, Mussmann L, Olivier H (1995) A novel class of versatile solvents for two-phase catalysis: hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazolium salts. Angew Chem Int Ed Eng 34:2698–2700CrossRef
83.
go back to reference Webb PB, Sellin MF, Kunene TE, Williamson S, Slawin AMZ, Cole-Hamilton DJ (2003) Continuous flow hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic systems. J Am Chem Soc 125:15577–15588CrossRef Webb PB, Sellin MF, Kunene TE, Williamson S, Slawin AMZ, Cole-Hamilton DJ (2003) Continuous flow hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic systems. J Am Chem Soc 125:15577–15588CrossRef
84.
go back to reference Kulkarni A, Torok B (2010) Microwave-assisted multicomponent domino cyclization–aromatization: an efficient approach for the synthesis of substituted quinolones. Green Chem 12:875–878CrossRef Kulkarni A, Torok B (2010) Microwave-assisted multicomponent domino cyclization–aromatization: an efficient approach for the synthesis of substituted quinolones. Green Chem 12:875–878CrossRef
85.
go back to reference Corradi A, Leonelli C, Rizzuti A, Rosa R, Veronesi P, Grandi R, Baldassari S, Villa C (2007) New “green” approaches to the synthesis of pyrazole derivatives. Molecules 12:1482–1495CrossRef Corradi A, Leonelli C, Rizzuti A, Rosa R, Veronesi P, Grandi R, Baldassari S, Villa C (2007) New “green” approaches to the synthesis of pyrazole derivatives. Molecules 12:1482–1495CrossRef
86.
go back to reference Martins MAP, Beck PH, Buriol L, Frizzo CP, Moreira DN, Marzari MRB, Zanatta M, Machado P, Zanatta N, Bonacorso HG (2013) Evaluation of the synthesis of 1-(pentafluorophenyl)-4,5-dihydro-1H-pyrazoles using green metrics. Monatsh Chem 144:1043–1050CrossRef Martins MAP, Beck PH, Buriol L, Frizzo CP, Moreira DN, Marzari MRB, Zanatta M, Machado P, Zanatta N, Bonacorso HG (2013) Evaluation of the synthesis of 1-(pentafluorophenyl)-4,5-dihydro-1H-pyrazoles using green metrics. Monatsh Chem 144:1043–1050CrossRef
87.
go back to reference Henriques CA, Pinto SMA, Aquino GLB, Pineiro M, Calvete MJF, Pereira MM (2014) Ecofriendly porphyrin synthesis by using water under microwave irradiation. Chem Sus Chem 7:2821–2824CrossRef Henriques CA, Pinto SMA, Aquino GLB, Pineiro M, Calvete MJF, Pereira MM (2014) Ecofriendly porphyrin synthesis by using water under microwave irradiation. Chem Sus Chem 7:2821–2824CrossRef
88.
go back to reference (a) Hook BDA, Dohle WP, Hirst R, Pickworth M, Berry MB, Booker–Milburn KI (2005) A practical flow reactor for continuous organic photochemistry. J Org Chem 70:7558–7564. (b) Knowles JP, Elliott LD, Booker–Milburn KI (2012) Flow photochemistry: old light through new windows. Beilstein J Org Chem 8:2025–2052 (a) Hook BDA, Dohle WP, Hirst R, Pickworth M, Berry MB, Booker–Milburn KI (2005) A practical flow reactor for continuous organic photochemistry. J Org Chem 70:7558–7564. (b) Knowles JP, Elliott LD, Booker–Milburn KI (2012) Flow photochemistry: old light through new windows. Beilstein J Org Chem 8:2025–2052
89.
go back to reference (a) Yoon TP, Ischay M, Du J (2010) Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2:527–532. (b) Ischay MA, Ament MS, Yoon TP (2012) Crossed intermolecular [2 + 2] cycloaddition of styrenes by visible light photocatalysis. Chem Sci 3:2807–2811 (a) Yoon TP, Ischay M, Du J (2010) Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2:527–532. (b) Ischay MA, Ament MS, Yoon TP (2012) Crossed intermolecular [2 + 2] cycloaddition of styrenes by visible light photocatalysis. Chem Sci 3:2807–2811
Metadata
Title
Activation of Chemical Substrates in Green Chemistry
Authors
Angelo Albini
Stefano Protti
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-25895-9_3

Premium Partners