Skip to main content
Top
Published in: Experiments in Fluids 8/2016

01-08-2016 | Research Article

Active control of crossflow-induced transition by means of in-line pneumatic actuator orifices

Authors: J. Lohse, H. P. Barth, W. Nitsche

Published in: Experiments in Fluids | Issue 8/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The possibility of a pneumatic actuator system for controlling the crossflow vortex-induced laminar breakdown is investigated by means of hot-wire measurements. Steady blowing or suction through a spanwise row of periodically arranged orifices initiates a system of longitudinal vortices which reduces the amplitude of the most amplified stationary crossflow vortices. Thus, the onset of high-frequency secondary instability and the following laminar–turbulent transition was shifted farther downstream. All experiments were conducted at the redesigned DLR swept flat plate experiment in the open test section of the 1 m wind tunnel at the DLR in Göttingen.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bippes H (1999) Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability. Prog Aerosp Sci 35(4):363–412CrossRef Bippes H (1999) Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability. Prog Aerosp Sci 35(4):363–412CrossRef
go back to reference Bippes H, Lerche T (1997) Transition prediction in three-dimensional boundary-layer flow unstable to crossflow instability. AIAA Pap 97–7906:1–10 Bippes H, Lerche T (1997) Transition prediction in three-dimensional boundary-layer flow unstable to crossflow instability. AIAA Pap 97–7906:1–10
go back to reference Carpenter A, Saric W, Reed H (2008) Laminar flow control on a swept wing with distributed roughness. AIAA Pap 2008–7335:1–9 Carpenter A, Saric W, Reed H (2008) Laminar flow control on a swept wing with distributed roughness. AIAA Pap 2008–7335:1–9
go back to reference COCO (1998) Coco a program to compute velocity and temperature profiles for local and nonlocal stability analysis of compressible, conical boundary layers with suction. ZARM Technik Report COCO (1998) Coco a program to compute velocity and temperature profiles for local and nonlocal stability analysis of compressible, conical boundary layers with suction. ZARM Technik Report
go back to reference Deyhle H, Bippes H (1996) Disturbance growth in an unstable three-dimensional boundary layer and its dependence on environmental conditions. J Fluid Mech 316:73–113CrossRef Deyhle H, Bippes H (1996) Disturbance growth in an unstable three-dimensional boundary layer and its dependence on environmental conditions. J Fluid Mech 316:73–113CrossRef
go back to reference Dörr P, Kloker M (2015a) Stabilisation of a three-dimensional boundary layer by base-flow manipulation using plasma actuators. J Phys D Appl Phys 48(28):285205 Dörr P, Kloker M (2015a) Stabilisation of a three-dimensional boundary layer by base-flow manipulation using plasma actuators. J Phys D Appl Phys 48(28):285205
go back to reference Dörr P, Kloker M (2015b) Transition control in a three-dimensional boundary-layer flow using plasma actuators. Proc IUTAM 14:469–478CrossRef Dörr P, Kloker M (2015b) Transition control in a three-dimensional boundary-layer flow using plasma actuators. Proc IUTAM 14:469–478CrossRef
go back to reference Drela M, Giles MB (1987) Viscous-inviscid analysis of transonic and low reynolds number airfoils. AIAA J 25(10):1347–1355CrossRefMATH Drela M, Giles MB (1987) Viscous-inviscid analysis of transonic and low reynolds number airfoils. AIAA J 25(10):1347–1355CrossRefMATH
go back to reference Friederich T, Kloker M (2011) Control of crossflow-vortex induced transition: DNS of pinpoint suction. AIAA Pap 2011–3884:1–12 Friederich T, Kloker M (2011) Control of crossflow-vortex induced transition: DNS of pinpoint suction. AIAA Pap 2011–3884:1–12
go back to reference Hein S, Bertolotti FP, Simen M, Hanifi A, Henningson D (1995) Linear nonlocal instability analysis—the linear nolot code. DLR-IB 223-94 A 56 Hein S, Bertolotti FP, Simen M, Hanifi A, Henningson D (1995) Linear nonlocal instability analysis—the linear nolot code. DLR-IB 223-94 A 56
go back to reference Joslin RD (1998) Aircraft laminar flow control. Annu Rev Fluid Mech 30:1–29CrossRef Joslin RD (1998) Aircraft laminar flow control. Annu Rev Fluid Mech 30:1–29CrossRef
go back to reference Kachanov Y (1996) Experimental studies of three-dimensional instability of boundary layers. AIAA Pap 96–1978:1–14 Kachanov Y (1996) Experimental studies of three-dimensional instability of boundary layers. AIAA Pap 96–1978:1–14
go back to reference Kloker M (2008) Advanced laminar flow control on a swept wing—useful crossflow vortices and suction. In: 38th Fluid dynamics conference and exhibit, vol 3835. 2008, AIAA paper, p 2008 Kloker M (2008) Advanced laminar flow control on a swept wing—useful crossflow vortices and suction. In: 38th Fluid dynamics conference and exhibit, vol 3835. 2008, AIAA paper, p 2008
go back to reference Kurian T, Fransson J, Alfredsson PH (2011) Boundary layer receptivity to free-stream turbulence and surface roughness over a swept flat plate. Phys Fluids 23:1–14CrossRef Kurian T, Fransson J, Alfredsson PH (2011) Boundary layer receptivity to free-stream turbulence and surface roughness over a swept flat plate. Phys Fluids 23:1–14CrossRef
go back to reference Kurz H, Kloker M (2016) Mechanisms of flow tripping by discrete roughness elements in a swept-wing boundary layer. J Fluid Mech 796:158–194MathSciNetCrossRef Kurz H, Kloker M (2016) Mechanisms of flow tripping by discrete roughness elements in a swept-wing boundary layer. J Fluid Mech 796:158–194MathSciNetCrossRef
go back to reference Malik M, Li F, Chang C (1994) Crossflow disturbances in three-dimensional boundary layers: nonlinear development, wave interaction and secondary instability. J Fluid Mech 268(1):1–36CrossRefMATH Malik M, Li F, Chang C (1994) Crossflow disturbances in three-dimensional boundary layers: nonlinear development, wave interaction and secondary instability. J Fluid Mech 268(1):1–36CrossRefMATH
go back to reference Malik M, Li F, Choudhari M, Chang C (1999) Secondary instability of crossflow vortices and swept-wing boundary-layer transition. J Fluid Mech 399(1):85–115CrossRefMATH Malik M, Li F, Choudhari M, Chang C (1999) Secondary instability of crossflow vortices and swept-wing boundary-layer transition. J Fluid Mech 399(1):85–115CrossRefMATH
go back to reference Messing R, Kloker M (2010) Investigation of suction for laminar flow control of three-dimensional boundary layers. J Fluid Mech 658:117–147CrossRefMATH Messing R, Kloker M (2010) Investigation of suction for laminar flow control of three-dimensional boundary layers. J Fluid Mech 658:117–147CrossRefMATH
go back to reference Reibert M, Saric W Jr, C R, Chapman K (1996) Experiments in nonlinear saturation of stationary crossflow vortices in a swept wing boundary layer. AIAA Pap 96–0184:1–15 Reibert M, Saric W Jr, C R, Chapman K (1996) Experiments in nonlinear saturation of stationary crossflow vortices in a swept wing boundary layer. AIAA Pap 96–0184:1–15
go back to reference Saric W Jr, C R, Reibert M (1998) Leading-edge roughness as a transition control mechanism. AIAA Pap 98–0781:1–13 Saric W Jr, C R, Reibert M (1998) Leading-edge roughness as a transition control mechanism. AIAA Pap 98–0781:1–13
go back to reference Schuele CY, Corke TC, Matlis E (2013) Control of stationary cross-flow modes in a mach 3.5 boundary layer using patterned passive and active roughness. J Fluid Mech 718:5–38CrossRefMATH Schuele CY, Corke TC, Matlis E (2013) Control of stationary cross-flow modes in a mach 3.5 boundary layer using patterned passive and active roughness. J Fluid Mech 718:5–38CrossRefMATH
go back to reference Wassermann P, Kloker M (2002) Mechanisms and passive control of crossflow-vortex-induced transition in a three-dimensional boundary layer. J Fluid Mech 456:49–84MathSciNetCrossRefMATH Wassermann P, Kloker M (2002) Mechanisms and passive control of crossflow-vortex-induced transition in a three-dimensional boundary layer. J Fluid Mech 456:49–84MathSciNetCrossRefMATH
go back to reference White E, Saric WS (2000) Application of variable leading-edge roughness for transition control on swept wings. AIAA Conf Proc Pap 2000–0283:1–11 White E, Saric WS (2000) Application of variable leading-edge roughness for transition control on swept wings. AIAA Conf Proc Pap 2000–0283:1–11
go back to reference White E, Saric WS (2005) Secondary instability of crossflow vortices. J Fluid Mech 525:275–308CrossRefMATH White E, Saric WS (2005) Secondary instability of crossflow vortices. J Fluid Mech 525:275–308CrossRefMATH
Metadata
Title
Active control of crossflow-induced transition by means of in-line pneumatic actuator orifices
Authors
J. Lohse
H. P. Barth
W. Nitsche
Publication date
01-08-2016
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 8/2016
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-016-2213-x

Other articles of this Issue 8/2016

Experiments in Fluids 8/2016 Go to the issue

Premium Partners