Skip to main content
Top

2025 | OriginalPaper | Chapter

AdaDiffSR: Adaptive Region-Aware Dynamic Acceleration Diffusion Model for Real-World Image Super-Resolution

Authors : Yuanting Fan, Chengxu Liu, Nengzhong Yin, Changlong Gao, Xueming Qian

Published in: Computer Vision – ECCV 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Diffusion models (DMs) have shown promising results on single-image super-resolution and other image-to-image translation tasks. Benefiting from more computational resources and longer inference times, they are able to yield more realistic imagesqueryThis is to inform you that corresponding author has been identified as per the information available in the Copyright form.. Existing DMs-based super-resolution methods try to achieve an overall average recovery over all regions via iterative refinement, ignoring the consideration that different input image regions require different timesteps to reconstruct. In this work, we notice that previous DMs-based super-resolution methods suffer from wasting computational resources to reconstruct invisible details. To further improve the utilization of computational resources, we propose AdaDiffSR, a DMs-based SR pipeline with dynamic timesteps sampling strategy (DTSS). Specifically, by introducing the multi-metrics latent entropy module (MMLE), we can achieve dynamic perception of the latent spatial information gain during the denoising process, thereby guiding the dynamic selection of the timesteps. In addition, we adopt a progressive feature injection module (PFJ), which dynamically injects the original image features into the denoising process based on the current information gain, so as to generate images with both fidelity and realism. Experiments show that our AdaDiffSR achieves comparable performance over current state-of-the-art DMs-based SR methods while consuming less computational resources and inference time on both synthetic and real-world datasets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: Dataset and study. In: CVPRW (2017) Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: Dataset and study. In: CVPRW (2017)
2.
go back to reference Blau, Y., Mechrez, R., Timofte, R., Michaeli, T., Zelnik-Manor, L.: The 2018 PIRM challenge on perceptual image super-resolution. In: ECCVW (2018) Blau, Y., Mechrez, R., Timofte, R., Michaeli, T., Zelnik-Manor, L.: The 2018 PIRM challenge on perceptual image super-resolution. In: ECCVW (2018)
3.
go back to reference Cai, J., et al.: Toward real-world single image super-resolution: a new benchmark and a new model. In: ICCV (2019) Cai, J., et al.: Toward real-world single image super-resolution: a new benchmark and a new model. In: ICCV (2019)
4.
go back to reference Che, T., Li, Y., Jacob, A.P., Bengio, Y., Li, W.: Mode regularized generative adversarial networks. arXiv preprint arXiv:1612.02136 (2016) Che, T., Li, Y., Jacob, A.P., Bengio, Y., Li, W.: Mode regularized generative adversarial networks. arXiv preprint arXiv:​1612.​02136 (2016)
5.
go back to reference Chen, C., Mo, J.: IQA-PyTorch: Pytorch toolbox for image quality assessment Chen, C., Mo, J.: IQA-PyTorch: Pytorch toolbox for image quality assessment
6.
go back to reference Chen, C., et al.: TOPIQ: a top-down approach from semantics to distortions for image quality assessment. arXiv preprint arXiv:2308.03060 (2023) Chen, C., et al.: TOPIQ: a top-down approach from semantics to distortions for image quality assessment. arXiv preprint arXiv:​2308.​03060 (2023)
7.
go back to reference Chen, C., Shi: real-world blind super-resolution via feature matching with implicit high-resolution priors. In: ACM MM (2022) Chen, C., Shi: real-world blind super-resolution via feature matching with implicit high-resolution priors. In: ACM MM (2022)
8.
go back to reference Chen, C., et al.: Iterative token evaluation and refinement for real-world super-resolution. In: AAAI, vol. 38, pp. 1010–1018 (2024) Chen, C., et al.: Iterative token evaluation and refinement for real-world super-resolution. In: AAAI, vol. 38, pp. 1010–1018 (2024)
9.
go back to reference Ding, K., Ma, K., Wang, S., Simoncelli, E.P.: Image quality assessment: unifying structure and texture similarity. IEEE TPAMI (2020) Ding, K., Ma, K., Wang, S., Simoncelli, E.P.: Image quality assessment: unifying structure and texture similarity. IEEE TPAMI (2020)
10.
go back to reference Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE TPAMI (2015) Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE TPAMI (2015)
12.
go back to reference Fritsche, M., Gu, S., Timofte, R.: Frequency separation for real-world super-resolution. In: ICCVW. IEEE (2019) Fritsche, M., Gu, S., Timofte, R.: Frequency separation for real-world super-resolution. In: ICCVW. IEEE (2019)
13.
go back to reference Golestaneh, S.A., Dadsetan: No-reference image quality assessment via transformers, relative ranking, and self-consistency. In: WACV Golestaneh, S.A., Dadsetan: No-reference image quality assessment via transformers, relative ranking, and self-consistency. In: WACV
14.
go back to reference Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.: Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626 (2022) Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.: Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:​2208.​01626 (2022)
15.
go back to reference Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. NeurIPS 33 (2020) Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. NeurIPS 33 (2020)
16.
go back to reference Ignatov, A., Kobyshev, N.: DSLR-quality photos on mobile devices with deep convolutional networks. In: ICCV (2017) Ignatov, A., Kobyshev, N.: DSLR-quality photos on mobile devices with deep convolutional networks. In: ICCV (2017)
17.
go back to reference Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., Huang, F.: Real-world super-resolution via kernel estimation and noise injection. In: CVPRW (2020) Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., Huang, F.: Real-world super-resolution via kernel estimation and noise injection. In: CVPRW (2020)
18.
go back to reference Jiménez, Á.B.: Mixture of diffusers for scene composition and high resolution image generation. arXiv preprint arXiv:2302.02412 (2023) Jiménez, Á.B.: Mixture of diffusers for scene composition and high resolution image generation. arXiv preprint arXiv:​2302.​02412 (2023)
19.
go back to reference Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image quality assessment. In: CVPR, pp. 1733–1740 (2014) Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image quality assessment. In: CVPR, pp. 1733–1740 (2014)
20.
go back to reference Ke, J., Wang, Q., Wang, Y., Milanfar, P., Yang, F.: MUSIQ: multi-scale image quality transformer. In: ICCV (2021) Ke, J., Wang, Q., Wang, Y., Milanfar, P., Yang, F.: MUSIQ: multi-scale image quality transformer. In: ICCV (2021)
22.
go back to reference Kong, X., Zhao, H., Qiao, Y., Dong, C.: ClassSR: a general framework to accelerate super-resolution networks by data characteristic. In: CVPR (2021) Kong, X., Zhao, H., Qiao, Y., Dong, C.: ClassSR: a general framework to accelerate super-resolution networks by data characteristic. In: CVPR (2021)
23.
go back to reference Lao, S., et al.: Attentions help CNNs see better: attention-based hybrid image quality assessment network. In: CVPRW (2022) Lao, S., et al.: Attentions help CNNs see better: attention-based hybrid image quality assessment network. In: CVPRW (2022)
24.
go back to reference Ledig, C., Theis, L., Huszár, F., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017) Ledig, C., Theis, L., Huszár, F., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)
26.
go back to reference Liebel, L., Körner, M.: Single-image super resolution for multispectral remote sensing data using convolutional neural networks. ISPRS (2016) Liebel, L., Körner, M.: Single-image super resolution for multispectral remote sensing data using convolutional neural networks. ISPRS (2016)
27.
go back to reference Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: CVPRW (2017) Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: CVPRW (2017)
28.
29.
go back to reference Liu, C., Wang, X., Fan, Y., Li, S., Qian, X.: Decoupling degradations with recurrent network for video restoration in under-display camera. In: AAAI, vol. 38, pp. 3558–3566 (2024) Liu, C., Wang, X., Fan, Y., Li, S., Qian, X.: Decoupling degradations with recurrent network for video restoration in under-display camera. In: AAAI, vol. 38, pp. 3558–3566 (2024)
30.
go back to reference Liu, C., et al.: Motion-adaptive separable collaborative filters for blind motion deblurring. In: CVPR, pp. 25595–25605 (2024) Liu, C., et al.: Motion-adaptive separable collaborative filters for blind motion deblurring. In: CVPR, pp. 25595–25605 (2024)
31.
go back to reference Liu, C., Yang, H., Fu, J., Qian, X.: Learning trajectory-aware transformer for video super-resolution. In: CVPR, pp. 5687–5696 (2022) Liu, C., Yang, H., Fu, J., Qian, X.: Learning trajectory-aware transformer for video super-resolution. In: CVPR, pp. 5687–5696 (2022)
33.
go back to reference Ma, C., Yang, C.Y., Yang, X., Yang, M.H.: Learning a no-reference quality metric for single-image super-resolution. CVIU (2017) Ma, C., Yang, C.Y., Yang, X., Yang, M.H.: Learning a no-reference quality metric for single-image super-resolution. CVIU (2017)
34.
go back to reference Maeda, S.: Unpaired image super-resolution using pseudo-supervision. In: CVPR (2020) Maeda, S.: Unpaired image super-resolution using pseudo-supervision. In: CVPR (2020)
35.
go back to reference Mao, Q., Lee, H.Y., Tseng, H.Y., Ma, S., Yang, M.H.: Mode seeking generative adversarial networks for diverse image synthesis. In: CVPR (2019) Mao, Q., Lee, H.Y., Tseng, H.Y., Ma, S., Yang, M.H.: Mode seeking generative adversarial networks for diverse image synthesis. In: CVPR (2019)
36.
go back to reference Mei, K., Delbracio, M., Talebi, H., Tu, Z., Patel, V.M., Milanfar, P.: CoDi: conditional diffusion distillation for higher-fidelity and faster image generation. In: CVPR, pp. 9048–9058 (2024) Mei, K., Delbracio, M., Talebi, H., Tu, Z., Patel, V.M., Milanfar, P.: CoDi: conditional diffusion distillation for higher-fidelity and faster image generation. In: CVPR, pp. 9048–9058 (2024)
37.
go back to reference Mittal, A., Moorthy, A.K., Bovik, A.C.: Blind/referenceless image spatial quality evaluator. In: ASILOMAR, pp. 723–727 (2011) Mittal, A., Moorthy, A.K., Bovik, A.C.: Blind/referenceless image spatial quality evaluator. In: ASILOMAR, pp. 723–727 (2011)
38.
go back to reference Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE TIP 21(12), 4695–4708 (2012)MathSciNet Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE TIP 21(12), 4695–4708 (2012)MathSciNet
39.
go back to reference Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind’’ image quality analyzer. SPL 20(3), 209–212 (2012) Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind’’ image quality analyzer. SPL 20(3), 209–212 (2012)
40.
go back to reference Mokady, R., Hertz, A., Aberman: null-text inversion for editing real images using guided diffusion models. In: CVPR, pp. 6038–6047 (2023) Mokady, R., Hertz, A., Aberman: null-text inversion for editing real images using guided diffusion models. In: CVPR, pp. 6038–6047 (2023)
41.
go back to reference Rombach, R., Blattmann, A., et al.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022) Rombach, R., Blattmann, A., et al.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)
42.
go back to reference Sahak, H., Watson, D., Saharia, C., Fleet, D.: Denoising diffusion probabilistic models for robust image super-resolution in the wild. arXiv preprint arXiv:2302.07864 (2023) Sahak, H., Watson, D., Saharia, C., Fleet, D.: Denoising diffusion probabilistic models for robust image super-resolution in the wild. arXiv preprint arXiv:​2302.​07864 (2023)
43.
go back to reference Saharia, C., Ho, J., et al.: Image super-resolution via iterative refinement. IEEE TPAMI (2022) Saharia, C., Ho, J., et al.: Image super-resolution via iterative refinement. IEEE TPAMI (2022)
45.
go back to reference Srivastava, A., Valkov, L., Russell, C., Gutmann, M.U., Sutton, C.: Veegan: reducing mode collapse in GANs using implicit variational learning. NeurIPS (2017) Srivastava, A., Valkov, L., Russell, C., Gutmann, M.U., Sutton, C.: Veegan: reducing mode collapse in GANs using implicit variational learning. NeurIPS (2017)
46.
go back to reference Su, S., et al.: Blindly assess image quality in the wild guided by a self-adaptive hyper network. In: CVPR (2020) Su, S., et al.: Blindly assess image quality in the wild guided by a self-adaptive hyper network. In: CVPR (2020)
47.
go back to reference Timofte, R., Agustsson, E.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: CVPRW (2017) Timofte, R., Agustsson, E.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: CVPRW (2017)
48.
go back to reference Vaswani, A., et al.: Attention is all you need. NeurIPS 30 (2017) Vaswani, A., et al.: Attention is all you need. NeurIPS 30 (2017)
49.
go back to reference Verelst, T., Tuytelaars, T.: Dynamic convolutions: exploiting spatial sparsity for faster inference. In: CVPR, pp. 2320–2329 (2020) Verelst, T., Tuytelaars, T.: Dynamic convolutions: exploiting spatial sparsity for faster inference. In: CVPR, pp. 2320–2329 (2020)
50.
go back to reference Wang, J., Chan, K.C., Loy, C.C.: Exploring clip for assessing the look and feel of images. In: AAAI (2023) Wang, J., Chan, K.C., Loy, C.C.: Exploring clip for assessing the look and feel of images. In: AAAI (2023)
51.
52.
go back to reference Wang, L., et al.: Exploring sparsity in image super-resolution for efficient inference. In: CVPR, pp. 4917–4926 (2021) Wang, L., et al.: Exploring sparsity in image super-resolution for efficient inference. In: CVPR, pp. 4917–4926 (2021)
53.
go back to reference Wang, L., et al.: Unsupervised degradation representation learning for blind super-resolution. In: CVPR (2021) Wang, L., et al.: Unsupervised degradation representation learning for blind super-resolution. In: CVPR (2021)
55.
go back to reference Wang, X., Xie, L., et al.: Real-ESRGAN: training real-world blind super-resolution with pure synthetic data. In: ICCV (2021) Wang, X., Xie, L., et al.: Real-ESRGAN: training real-world blind super-resolution with pure synthetic data. In: ICCV (2021)
56.
go back to reference Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: CVPR (2018) Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: CVPR (2018)
57.
go back to reference Wang, X., Yu, K., Wu, S., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: ECCVW (2018) Wang, X., Yu, K., Wu, S., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: ECCVW (2018)
59.
go back to reference Wu, J.Z., et al.: Tune-a-video: one-shot tuning of image diffusion models for text-to-video generation. In: ICCV (2023) Wu, J.Z., et al.: Tune-a-video: one-shot tuning of image diffusion models for text-to-video generation. In: ICCV (2023)
60.
go back to reference Wu, R., Yang, T., Sun, L., Zhang, Z., Li, S., Zhang, L.: SeeSR: towards semantics-aware real-world image super-resolution. In: CVPR, pp. 25456–25467 (2024) Wu, R., Yang, T., Sun, L., Zhang, Z., Li, S., Zhang, L.: SeeSR: towards semantics-aware real-world image super-resolution. In: CVPR, pp. 25456–25467 (2024)
61.
go back to reference Xue, W., Zhang, L., et al.: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE TIP (2013) Xue, W., Zhang, L., et al.: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE TIP (2013)
62.
go back to reference Yang, S., et al.: MANIQA: multi-dimension attention network for no-reference image quality assessment. In: CVPRW (2022) Yang, S., et al.: MANIQA: multi-dimension attention network for no-reference image quality assessment. In: CVPRW (2022)
63.
go back to reference Ying, Z., Niu, H., Gupta, P., Mahajan, D., Ghadiyaram, D., Bovik, A.: From patches to pictures (PaQ-2-PiQ): mapping the perceptual space of picture quality. In: CVPR, pp. 3575–3585 (2020) Ying, Z., Niu, H., Gupta, P., Mahajan, D., Ghadiyaram, D., Bovik, A.: From patches to pictures (PaQ-2-PiQ): mapping the perceptual space of picture quality. In: CVPR, pp. 3575–3585 (2020)
64.
65.
go back to reference Yu, J., Huang, T.S.: Universally slimmable networks and improved training techniques. In: ICCV (2019) Yu, J., Huang, T.S.: Universally slimmable networks and improved training techniques. In: ICCV (2019)
67.
go back to reference Yue, Z., Wang, J., Loy, C.C.: ResShift: efficient diffusion model for image super-resolution by residual shifting. In: NeurIPS (2024) Yue, Z., Wang, J., Loy, C.C.: ResShift: efficient diffusion model for image super-resolution by residual shifting. In: NeurIPS (2024)
68.
go back to reference Xiong, Y., Varadarajan, B., Wu, L., et al.: EfficientSAM: leveraged masked image pretraining for efficient segment anything. arXiv:2312.00863 (2023) Xiong, Y., Varadarajan, B., Wu, L., et al.: EfficientSAM: leveraged masked image pretraining for efficient segment anything. arXiv:​2312.​00863 (2023)
69.
go back to reference Zhang, C., et al.: Faster segment anything: towards lightweight SAM for mobile applications (2023) Zhang, C., et al.: Faster segment anything: towards lightweight SAM for mobile applications (2023)
70.
go back to reference Zhang, J., Lu, S., Zhan, F., Yu, Y.: Blind image super-resolution via contrastive representation learning. arXiv preprint arXiv:2107.00708 (2021) Zhang, J., Lu, S., Zhan, F., Yu, Y.: Blind image super-resolution via contrastive representation learning. arXiv preprint arXiv:​2107.​00708 (2021)
71.
go back to reference Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: ICCV (2021) Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: ICCV (2021)
72.
go back to reference Zhang, L., Zhang, L., Bovik, A.C.: A feature-enriched completely blind image quality evaluator. IEEE TIP 24(8), 2579–2591 (2015)MathSciNet Zhang, L., Zhang, L., Bovik, A.C.: A feature-enriched completely blind image quality evaluator. IEEE TIP 24(8), 2579–2591 (2015)MathSciNet
73.
go back to reference Zhang, R., Isola, P., Efros, A., et al.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018) Zhang, R., Isola, P., Efros, A., et al.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
74.
go back to reference Zhang, W., Ma, K., Yan, J., Deng, D., Wang, Z.: Blind image quality assessment using a deep bilinear convolutional neural network. IEEE TCSVT (2020) Zhang, W., Ma, K., Yan, J., Deng, D., Wang, Z.: Blind image quality assessment using a deep bilinear convolutional neural network. IEEE TCSVT (2020)
75.
go back to reference Zhao, X., et al.: Fast segment anything (2023) Zhao, X., et al.: Fast segment anything (2023)
76.
go back to reference Zheng, H., Yang, H., Fu, J., Zha, Z.J., Luo, J.: Learning conditional knowledge distillation for degraded-reference image quality assessment. In: ICCV (2021) Zheng, H., Yang, H., Fu, J., Zha, Z.J., Luo, J.: Learning conditional knowledge distillation for degraded-reference image quality assessment. In: ICCV (2021)
Metadata
Title
AdaDiffSR: Adaptive Region-Aware Dynamic Acceleration Diffusion Model for Real-World Image Super-Resolution
Authors
Yuanting Fan
Chengxu Liu
Nengzhong Yin
Changlong Gao
Xueming Qian
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-73254-6_23

Premium Partner