Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

11-06-2021 | Original Article | Issue 8/2021

International Journal of Computer Assisted Radiology and Surgery 8/2021

Adapting the listening time for micro-electrode recordings in deep brain stimulation interventions

Journal:
International Journal of Computer Assisted Radiology and Surgery > Issue 8/2021
Authors:
Thibault Martin, Greydon Gilmore, Claire Haegelen, Pierre Jannin, John S. H. Baxter
Important notes
Thibault Martin is supported through a Doctoral Research Grant from Association France Parkinson. John S.H. Baxter is supported by the Institut des Neurosciences Cliniques de Rennes (INCR) and the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Post-Doctoral Fellowship (PDF) program.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Purpose

Deep brain stimulation (DBS) is a common treatment for a variety of neurological disorders which involves the precise placement of electrodes at particular subcortical locations such as the subthalamic nucleus. This placement is often guided by auditory analysis of micro-electrode recordings (MERs) which informs the clinical team as to the anatomic region in which the electrode is currently positioned. Recent automation attempts have lacked flexibility in terms of the amount of signal recorded, not allowing them to collect more signal when higher certainty is needed or less when the anatomy is unambiguous.

Methods

We have addressed this problem by evaluating a simple algorithm that allows for MER signal collection to terminate once the underlying model has sufficient confidence. We have parameterized this approach and explored its performance using three underlying models composed of one neural network and two Bayesian extensions of said network.

Results

We have shown that one particular configuration, a Bayesian model of the underlying network’s certainty, outperforms the others and is relatively insensitive to parameterization. Further investigation shows that this model also allows for signals to be classified earlier without increasing the error rate.

Conclusion

We have presented a simple algorithm that records the confidence of an underlying neural network, thus allowing for MER data collection to be terminated early when sufficient confidence is reached. This has the potential to improve the efficiency of DBS electrode implantation by reducing the time required to identify anatomical structures using MERs.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2021

International Journal of Computer Assisted Radiology and Surgery 8/2021 Go to the issue

Premium Partner

    Image Credits