Skip to main content
Top
Published in: Neural Computing and Applications 11/2021

06-10-2020 | Original Article

Adaptive composite neural network disturbance observer-based dynamic surface control for electrically driven robotic manipulators

Authors: Jinzhu Peng, Shuai Ding, Rickey Dubay

Published in: Neural Computing and Applications | Issue 11/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents an adaptive backstepping control scheme for electrically driven robotic manipulator (EDRM) system with uncertainties and external disturbances by using neural network disturbance observer (NNDO) and dynamic surface control (DSC) design technique. NNDO is employed to estimate the uncertainties and external disturbances such that the priori information of the unknown dynamics will not be needed. To overcome the problem of “explosion of complexity” inherent in the backstepping design method, the DSC technique is integrated into the adaptive backstepping control design framework, where the NNDOs with adaptive composite law are utilized to compensate the uncertainties and external disturbances of EDRM. Based on the Lyapunov stability theory, it can be proven that the closed-loop system is stable in the sense that all the variables are guaranteed to be uniformly ultimately bounded. The results of simulation and experimental tests demonstrate the approximation capability of NNDO and the effectiveness of the proposed adaptive DSC scheme.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Middletone RH, Goodwin GC (1986) Adaptive computed torque control for rigid link manipulators. In: 25th IEEE conference on decision and control, Athens, Greece, pp 68–73 Middletone RH, Goodwin GC (1986) Adaptive computed torque control for rigid link manipulators. In: 25th IEEE conference on decision and control, Athens, Greece, pp 68–73
2.
go back to reference Song Z, Yi J, Zhao D, Li X (2005) A computed torque controller for uncertain robotic manipulator systems: fuzzy approach. Fuzzy Sets Syst 154:208–226MathSciNetMATH Song Z, Yi J, Zhao D, Li X (2005) A computed torque controller for uncertain robotic manipulator systems: fuzzy approach. Fuzzy Sets Syst 154:208–226MathSciNetMATH
3.
go back to reference Peng J, Wang J, Wang Y (2011) Neural network based robust hybrid control for robotic system: an \(H_\infty \) approach. Nonlinear Dyn 65(4):421–431MathSciNetMATH Peng J, Wang J, Wang Y (2011) Neural network based robust hybrid control for robotic system: an \(H_\infty \) approach. Nonlinear Dyn 65(4):421–431MathSciNetMATH
4.
go back to reference Sun T, Pei H, Pan Y, Zhou H, Zhang C (2011) Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74(14–15):2377–2384 Sun T, Pei H, Pan Y, Zhou H, Zhang C (2011) Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74(14–15):2377–2384
5.
go back to reference Peng J, Liu Y, Wang J (2014) Fuzzy adaptive output feedback control for robotic systems based on fuzzy adaptive observer. Nonlinear Dyn 78(2):789–801MATH Peng J, Liu Y, Wang J (2014) Fuzzy adaptive output feedback control for robotic systems based on fuzzy adaptive observer. Nonlinear Dyn 78(2):789–801MATH
6.
go back to reference Yen VT, Wang YN, Cuong PV (2019) Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators. Neural Comput Appl 31(11):6945–6958 Yen VT, Wang YN, Cuong PV (2019) Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators. Neural Comput Appl 31(11):6945–6958
7.
go back to reference Hsia T (1986) Adaptive control of robot manipulators—a review. In: Proceedings of 1986 IEEE international conference on robotics and automation, San Francisco, CA, USA, pp 183–189 Hsia T (1986) Adaptive control of robot manipulators—a review. In: Proceedings of 1986 IEEE international conference on robotics and automation, San Francisco, CA, USA, pp 183–189
8.
go back to reference Kardgar A, Fateh MM, Ahmadi SM (2018) Adaptive control of robot manipulators using the voltage control strategy. In: 26th Iranian conference on electrical engineering (ICEE2018), pp 772–777 Kardgar A, Fateh MM, Ahmadi SM (2018) Adaptive control of robot manipulators using the voltage control strategy. In: 26th Iranian conference on electrical engineering (ICEE2018), pp 772–777
9.
go back to reference Slotine JJE (1985) The robust control of robot manipulators. Int J Robot Res 4(2):49–64 Slotine JJE (1985) The robust control of robot manipulators. Int J Robot Res 4(2):49–64
10.
go back to reference Ahanda JJBM, Mbede JB, Melingui A, Zobo BE (2018) Robust adaptive control for robot manipulators: support vector regression-based command filtered adaptive backstepping approach. Robotica 36:516–534 Ahanda JJBM, Mbede JB, Melingui A, Zobo BE (2018) Robust adaptive control for robot manipulators: support vector regression-based command filtered adaptive backstepping approach. Robotica 36:516–534
11.
go back to reference Fateh MM, Khorashadizadeh S (2012) Robust control of electrically driven robots by adaptive fuzzy estimation of uncertainty. Nonlinear Dyn 69:1465–1477MathSciNetMATH Fateh MM, Khorashadizadeh S (2012) Robust control of electrically driven robots by adaptive fuzzy estimation of uncertainty. Nonlinear Dyn 69:1465–1477MathSciNetMATH
12.
go back to reference Su CY, Stepanenko Y (1995) Hybrid adaptive robust motion control of rigid-link electrically-driven robot manipulators. IEEE Trans Robot Autom 11(3):426–432 Su CY, Stepanenko Y (1995) Hybrid adaptive robust motion control of rigid-link electrically-driven robot manipulators. IEEE Trans Robot Autom 11(3):426–432
13.
go back to reference Habibi SR, Richards RJ (1992) Sliding mode control of an electrically powered industrial robot. IEE Proc Control Theory Appl 139(2):207–225MATH Habibi SR, Richards RJ (1992) Sliding mode control of an electrically powered industrial robot. IEE Proc Control Theory Appl 139(2):207–225MATH
14.
go back to reference Fateh MM, Tehrani HA, Karbassi SM (2013) Repetitive control of electrically driven robot manipulators. Int J Syst Sci 44:775–785MathSciNetMATH Fateh MM, Tehrani HA, Karbassi SM (2013) Repetitive control of electrically driven robot manipulators. Int J Syst Sci 44:775–785MathSciNetMATH
15.
go back to reference Soltanpour MR, Otadolajam P, Khooban MH (2015) Robust control strategy for electrically driven robot manipulators: adaptive fuzzy sliding mode. IET Sci Meas Technol 9(3):322–334 Soltanpour MR, Otadolajam P, Khooban MH (2015) Robust control strategy for electrically driven robot manipulators: adaptive fuzzy sliding mode. IET Sci Meas Technol 9(3):322–334
16.
go back to reference Ahmadi SM, Fateh MM (2016) Robust control of electrically driven robots using adaptive uncertainty estimation. Comput Electr Eng 5:674–687 Ahmadi SM, Fateh MM (2016) Robust control of electrically driven robots using adaptive uncertainty estimation. Comput Electr Eng 5:674–687
17.
go back to reference Izadbakhsh A (2017) FAT-based robust adaptive control of electrically driven robots without velocity measurements. Nonlinear Dyn 89:289–304MathSciNetMATH Izadbakhsh A (2017) FAT-based robust adaptive control of electrically driven robots without velocity measurements. Nonlinear Dyn 89:289–304MathSciNetMATH
18.
go back to reference Izadbakhsh A, Khorashadizadeh S, Kheirkhahan P (2019) Tracking control of electrically driven robots using a model-free observer. Robotica 37(4):729–755 Izadbakhsh A, Khorashadizadeh S, Kheirkhahan P (2019) Tracking control of electrically driven robots using a model-free observer. Robotica 37(4):729–755
19.
go back to reference Swaroop D, Hedrick JK, Yip PP, Gerdes JC (2000) Dynamic surface control for a class of nonlinear systems. IEEE Trans Autom Control 45(10):1893–1899MathSciNetMATH Swaroop D, Hedrick JK, Yip PP, Gerdes JC (2000) Dynamic surface control for a class of nonlinear systems. IEEE Trans Autom Control 45(10):1893–1899MathSciNetMATH
20.
go back to reference Guo F, Liu Y, Wu Y, Luo F (2018) Observer-based backstepping boundary control for a flexible riser system. Mech Syst Signal Process 111:314–330 Guo F, Liu Y, Wu Y, Luo F (2018) Observer-based backstepping boundary control for a flexible riser system. Mech Syst Signal Process 111:314–330
21.
go back to reference Edalati L, Sedigh AK, Shooredeli MA, Moarefianpour A (2018) Adaptive fuzzy dynamic surface control of nonlinear systems with input saturation and time-varying output constraints. Mech Syst Signal Process 100:311–329 Edalati L, Sedigh AK, Shooredeli MA, Moarefianpour A (2018) Adaptive fuzzy dynamic surface control of nonlinear systems with input saturation and time-varying output constraints. Mech Syst Signal Process 100:311–329
22.
go back to reference Peng J, Dubay R (2019) Adaptive fuzzy backstepping control for a class of uncertain nonlinear strict-feedback systems based on dynamic surface control approach. Expert Syst With Appl 120:239–252 Peng J, Dubay R (2019) Adaptive fuzzy backstepping control for a class of uncertain nonlinear strict-feedback systems based on dynamic surface control approach. Expert Syst With Appl 120:239–252
23.
go back to reference Huang SN, Tan KK, Lee TH (2008) Adaptive neural network algorithm for control design of rigid-link electrically driven robots. Neurocomputing 71(4–6):885–894 Huang SN, Tan KK, Lee TH (2008) Adaptive neural network algorithm for control design of rigid-link electrically driven robots. Neurocomputing 71(4–6):885–894
24.
go back to reference Shafiei SE, Soltanpour MR (2009) Robust neural network control of electrically driven robot manipulator using backstepping approach. Int J Adv Robot Syst 6(4):285–292 Shafiei SE, Soltanpour MR (2009) Robust neural network control of electrically driven robot manipulator using backstepping approach. Int J Adv Robot Syst 6(4):285–292
25.
go back to reference Wei X, Zhang HF, Guo L (2009) Composite disturbance observer-based control and terminal sliding mode control for uncertain structural systems. Int J Syst Sci 40(10):1009–1017MathSciNetMATH Wei X, Zhang HF, Guo L (2009) Composite disturbance observer-based control and terminal sliding mode control for uncertain structural systems. Int J Syst Sci 40(10):1009–1017MathSciNetMATH
26.
go back to reference Yang ZJ, Fukushima Y, Qin P (2012) Decentralized adaptive robust control of robot manipulators using disturbance observers. IEEE Trans Control Syst Technol 20(5):1357–1365 Yang ZJ, Fukushima Y, Qin P (2012) Decentralized adaptive robust control of robot manipulators using disturbance observers. IEEE Trans Control Syst Technol 20(5):1357–1365
27.
go back to reference Van M (2019) An enhanced tracking control of marine surface vessels based on adaptive integral sliding mode control and disturbance observer. ISA Trans 90:30–40 Van M (2019) An enhanced tracking control of marine surface vessels based on adaptive integral sliding mode control and disturbance observer. ISA Trans 90:30–40
28.
go back to reference Kong L, Yuan J (2019) Disturbance-observer-based fuzzy model predictive control for nonlinear processes with disturbances and input constraints. ISA Trans 90:74–88 Kong L, Yuan J (2019) Disturbance-observer-based fuzzy model predictive control for nonlinear processes with disturbances and input constraints. ISA Trans 90:74–88
29.
go back to reference Kong L, Yuan J (2019) Generalized Discrete-time nonlinear disturbance observer based fuzzy model predictive control for boiler-turbine systems. ISA Trans 90:89–106 Kong L, Yuan J (2019) Generalized Discrete-time nonlinear disturbance observer based fuzzy model predictive control for boiler-turbine systems. ISA Trans 90:89–106
30.
go back to reference Chen WH, Ballance DJ, Gawthrop PJ et al (2000) A nonlinear disturbance observer for robotic manipulators. IEEE Trans Ind Electron 47(4):932–938 Chen WH, Ballance DJ, Gawthrop PJ et al (2000) A nonlinear disturbance observer for robotic manipulators. IEEE Trans Ind Electron 47(4):932–938
31.
go back to reference Huang J, Ri S, Liu L et al (2015) Nonlinear disturbance observer-based dynamic surface control of mobile wheeled inverted pendulum. IEEE Trans Control Syst Technol 23(6):2400–2407 Huang J, Ri S, Liu L et al (2015) Nonlinear disturbance observer-based dynamic surface control of mobile wheeled inverted pendulum. IEEE Trans Control Syst Technol 23(6):2400–2407
32.
go back to reference Sun H, Guo L (2017) Neural network-based DOBC for a class of nonlinear systems with unmatched disturbances. IEEE Trans Neural Netw Learn Syst 28(2):482–489MathSciNet Sun H, Guo L (2017) Neural network-based DOBC for a class of nonlinear systems with unmatched disturbances. IEEE Trans Neural Netw Learn Syst 28(2):482–489MathSciNet
33.
go back to reference Homayounzade M, Khademhosseini A (2019) Disturbance observer-based trajectory following control of robot manipulators. Int J Control Autom Syst 17:203–211 Homayounzade M, Khademhosseini A (2019) Disturbance observer-based trajectory following control of robot manipulators. Int J Control Autom Syst 17:203–211
34.
go back to reference Wu Y, Li G (2018) Adaptive disturbance compensation finite control set optimal control for PMSM systems based on sliding mode extended state observer. Mech Syst Signal Process 98:402–414 Wu Y, Li G (2018) Adaptive disturbance compensation finite control set optimal control for PMSM systems based on sliding mode extended state observer. Mech Syst Signal Process 98:402–414
35.
go back to reference Jing C, Xu H, Niu X (2019) Adaptive sliding mode disturbance rejection control with prescribed performance for robotic manipulators. ISA Trans 91:41–51 Jing C, Xu H, Niu X (2019) Adaptive sliding mode disturbance rejection control with prescribed performance for robotic manipulators. ISA Trans 91:41–51
36.
go back to reference Deng Y, Wang J, Li H, Liu J, Tian D (2019) Adaptive sliding mode current control with sliding mode disturbance observer for PMSM drives. ISA Trans 88:113–126 Deng Y, Wang J, Li H, Liu J, Tian D (2019) Adaptive sliding mode current control with sliding mode disturbance observer for PMSM drives. ISA Trans 88:113–126
37.
go back to reference Zhu Y, Qiao J, Guo L (2019) Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing. IEEE Trans Ind Electron 66(3):1973–1983 Zhu Y, Qiao J, Guo L (2019) Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing. IEEE Trans Ind Electron 66(3):1973–1983
38.
go back to reference Kim E (2002) A fuzzy disturbance observer and its application to control. IEEE Trans Fuzzy Syst 10(1):77–84 Kim E (2002) A fuzzy disturbance observer and its application to control. IEEE Trans Fuzzy Syst 10(1):77–84
39.
go back to reference Jeong SC, Ji DH, Ju H et al (2013) Park adaptive synchronization for uncertain chaotic neural networks with mixed time delays using fuzzy disturbance observer. Appl Math Comput 219:5984–5995MathSciNetMATH Jeong SC, Ji DH, Ju H et al (2013) Park adaptive synchronization for uncertain chaotic neural networks with mixed time delays using fuzzy disturbance observer. Appl Math Comput 219:5984–5995MathSciNetMATH
40.
go back to reference Wang S, Ren X, Na J (2016) Adaptive dynamic surface control based on fuzzy disturbance observer for drive system with elastic coupling. J Frankl Inst 353:1899–1919MathSciNetMATH Wang S, Ren X, Na J (2016) Adaptive dynamic surface control based on fuzzy disturbance observer for drive system with elastic coupling. J Frankl Inst 353:1899–1919MathSciNetMATH
41.
go back to reference Nguyen SD, Choi SB, Nguyen QH (2018) A new fuzzy-disturbance observer-enhanced sliding controller for vibration control of a train–car suspension with magneto-rheological dampers. Mech Syst Signal Process 105:447–466 Nguyen SD, Choi SB, Nguyen QH (2018) A new fuzzy-disturbance observer-enhanced sliding controller for vibration control of a train–car suspension with magneto-rheological dampers. Mech Syst Signal Process 105:447–466
42.
go back to reference Mao Q, Dou L, Yang Z et al (2020) Fuzzy disturbance observer-based adaptive sliding mode control for reusable launch vehicles with aeroservoelastic characteristic. IEEE Trans Ind Inf 16(2):1214–1223 Mao Q, Dou L, Yang Z et al (2020) Fuzzy disturbance observer-based adaptive sliding mode control for reusable launch vehicles with aeroservoelastic characteristic. IEEE Trans Ind Inf 16(2):1214–1223
43.
go back to reference Wang D, Zong Q, Tian B et al (2018) Neural network disturbance observer-based distributed finite-time formation tracking control for multiple unmanned helicopters. ISA Trans 73:208–226 Wang D, Zong Q, Tian B et al (2018) Neural network disturbance observer-based distributed finite-time formation tracking control for multiple unmanned helicopters. ISA Trans 73:208–226
44.
go back to reference Dian S, Chen L, Hoang S et al (2018) Gain scheduled dynamic surface control for a class of underactuated mechanical systems using neural network disturbance observer. Neurocomputing 275:1998–2008 Dian S, Chen L, Hoang S et al (2018) Gain scheduled dynamic surface control for a class of underactuated mechanical systems using neural network disturbance observer. Neurocomputing 275:1998–2008
45.
go back to reference Ma Y, Cai Y, Yu Z (2019) Adaptive neural network disturbance observer based nonsingular fast terminal sliding mode control for a constrained flexible air-breathing hypersonic vehicle. J Aerosp Eng 233(7):2642–2662 Ma Y, Cai Y, Yu Z (2019) Adaptive neural network disturbance observer based nonsingular fast terminal sliding mode control for a constrained flexible air-breathing hypersonic vehicle. J Aerosp Eng 233(7):2642–2662
46.
go back to reference Zhao B, Xu S, Guo J et al (2019) Integrated strapdown missile guidance and control based on neural network disturbance observer. Aerosp Sci Technol 84:170–181 Zhao B, Xu S, Guo J et al (2019) Integrated strapdown missile guidance and control based on neural network disturbance observer. Aerosp Sci Technol 84:170–181
47.
go back to reference Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3(2):246–257 Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3(2):246–257
48.
go back to reference Wilson J, Charest M, Dubay R (2016) Non-linear model predictive control schemes with application on a 2-link vertical robot manipulator. Robot Comput Integr Manuf 41:23–30 Wilson J, Charest M, Dubay R (2016) Non-linear model predictive control schemes with application on a 2-link vertical robot manipulator. Robot Comput Integr Manuf 41:23–30
Metadata
Title
Adaptive composite neural network disturbance observer-based dynamic surface control for electrically driven robotic manipulators
Authors
Jinzhu Peng
Shuai Ding
Rickey Dubay
Publication date
06-10-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 11/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05391-8

Other articles of this Issue 11/2021

Neural Computing and Applications 11/2021 Go to the issue

Premium Partner