Skip to main content
Top
Published in:

01-12-2023 | Original Article

Adaptive-CSSA: adaptive-chicken squirrel search algorithm driven deep belief network for student stress-level and drop out prediction with MapReduce framework

Authors: V. Kamakshamma, K. F. Bharati

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article introduces an innovative approach for predicting student stress levels and dropout rates using an adaptive chicken squirrel search algorithm-driven deep belief network (DBN) within the MapReduce framework. The method leverages big data techniques to analyze student performance data, incorporating features such as student age, siblings, gender, family details, academic information, and external parameters. The proposed model employs the Box-Cox transformation for data preprocessing and uses correlation-based Tversky index for feature selection. The DBN classifier is optimized using the Adaptive-CSSA, which combines Chicken Swarm Optimization (CSO) and Squirrel Search Algorithm (SSA) to select the optimal number of hidden layers. The method is evaluated using two datasets, the Academic dataset and the Student Performance dataset, and demonstrates superior performance in predicting stress levels and dropout rates compared to traditional methods. The article concludes by highlighting the potential for future research in enhancing the prediction strategy using other deep learning methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Anson O, Bernstein J, Hobfoll SE (1984) Anxiety and performance in two ego threatening situations. J Pers Assess 48(2):168–172CrossRef Anson O, Bernstein J, Hobfoll SE (1984) Anxiety and performance in two ego threatening situations. J Pers Assess 48(2):168–172CrossRef
go back to reference Cesare S, Xiang Y (2012) Software birthmark similarity, In: Software similarity and classification, Springer, London, pp. 63–70 Cesare S, Xiang Y (2012) Software birthmark similarity, In: Software similarity and classification, Springer, London, pp. 63–70
go back to reference Chander S, Vijaya P (2020) Tunicate swarm-based black hole entropic fuzzy clustering for data clustering using COVID data. In: The proceeding of IEEE 17th india council international conference (INDICON), IEEE, New Delhi, India Chander S, Vijaya P (2020) Tunicate swarm-based black hole entropic fuzzy clustering for data clustering using COVID data. In: The proceeding of IEEE 17th india council international conference (INDICON), IEEE, New Delhi, India
go back to reference Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun ACM 51(1):107–113CrossRef Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun ACM 51(1):107–113CrossRef
go back to reference Do QD, Tasanapradit P (2008) Depression and stress among the first-year medical students in the University of Medicine and Pharmacy, Hochiminh city, Vietnam. J Health Res 22:1–4 Do QD, Tasanapradit P (2008) Depression and stress among the first-year medical students in the University of Medicine and Pharmacy, Hochiminh city, Vietnam. J Health Res 22:1–4
go back to reference Dupéré V, Leventhal T, Dion E, Crosnoe R, Archambault I, Janosz M (2014) Stressors and turning points in high school and dropout: a stress process, life course framework. Rev Educ Res 85(4):591CrossRef Dupéré V, Leventhal T, Dion E, Crosnoe R, Archambault I, Janosz M (2014) Stressors and turning points in high school and dropout: a stress process, life course framework. Rev Educ Res 85(4):591CrossRef
go back to reference Dusselier L, Dunn B, Wang Y, Shelley iI MC, Whalen DF (2005) Personal, health, academic, and environmental predictors of stress for residence hall students. J Am Coll Health 54(1):15–24CrossRef Dusselier L, Dunn B, Wang Y, Shelley iI MC, Whalen DF (2005) Personal, health, academic, and environmental predictors of stress for residence hall students. J Am Coll Health 54(1):15–24CrossRef
go back to reference Egilmez B, Poyraz E, Zhou W, Memik G, Dinda P, Alshurafa N (2017) “UStress: understanding college student subjective stress using wrist-based passive sensing, In: IEEE international conference on pervasive computing and communications workshops (PerCom Workshops), pp 673–678 Egilmez B, Poyraz E, Zhou W, Memik G, Dinda P, Alshurafa N (2017) “UStress: understanding college student subjective stress using wrist-based passive sensing, In: IEEE international conference on pervasive computing and communications workshops (PerCom Workshops), pp 673–678
go back to reference Elagib SB, Najeeb AR, Hashim AH, Olanrewaju RF (2014) Big data analysis solutions using MapReduce framework, In: IEEE international conference on computer and communication engineering, pp 127–130 Elagib SB, Najeeb AR, Hashim AH, Olanrewaju RF (2014) Big data analysis solutions using MapReduce framework, In: IEEE international conference on computer and communication engineering, pp 127–130
go back to reference Gokulkumari G (2020) An overview of big data management and its applications. J Netw Commun Syst 3(3):11–20 Gokulkumari G (2020) An overview of big data management and its applications. J Netw Commun Syst 3(3):11–20
go back to reference Hegde V, Prageeth PP (2018) Higher education student dropout prediction and analysis through educational data mining, In: IEEE 2nd international conference on inventive systems and control (ICISC), pp 694–699 Hegde V, Prageeth PP (2018) Higher education student dropout prediction and analysis through educational data mining, In: IEEE 2nd international conference on inventive systems and control (ICISC), pp 694–699
go back to reference Hussain S, Dahan NA, Ba-Alwib FM, Ribata N (2018) Educational data mining and analysis of students’ academic performance using WEKA. Indones J Electr Eng Comput Sci 9(2):447–459 Hussain S, Dahan NA, Ba-Alwib FM, Ribata N (2018) Educational data mining and analysis of students’ academic performance using WEKA. Indones J Electr Eng Comput Sci 9(2):447–459
go back to reference Hussain S, Muhsin ZF, Salal YK, Theodorou P, Kurtoğlu F, Hazarika GC (2019) Prediction model on student performance based on internal assessment using deep learning. Int J Emerg Technol Learn (iJET) 14(8):4–22CrossRef Hussain S, Muhsin ZF, Salal YK, Theodorou P, Kurtoğlu F, Hazarika GC (2019) Prediction model on student performance based on internal assessment using deep learning. Int J Emerg Technol Learn (iJET) 14(8):4–22CrossRef
go back to reference Jain M, Singh V, Rani A (2019) A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol Comput 44:148–175CrossRef Jain M, Singh V, Rani A (2019) A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol Comput 44:148–175CrossRef
go back to reference Kostopoulos G, Kotsiantis S, Ragos O, Grapsa TN, Early dropout prediction in distance higher education using active learning, In: IEEE 8th international conference on information, intelligence, systems and applications (IISA), pp 1–6 Kostopoulos G, Kotsiantis S, Ragos O, Grapsa TN, Early dropout prediction in distance higher education using active learning, In: IEEE 8th international conference on information, intelligence, systems and applications (IISA), pp 1–6
go back to reference Kuo JY, Pan CW, Lei B (2017) Using stacked denoising autoencoder for the student dropout prediction, In: IEEE international symposium on multimedia (ISM), pp 483–488 Kuo JY, Pan CW, Lei B (2017) Using stacked denoising autoencoder for the student dropout prediction, In: IEEE international symposium on multimedia (ISM), pp 483–488
go back to reference Meng X, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: chicken swarm optimization, In: International conference in swarm intelligence, Springer, Cham, pp 86-94 Meng X, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: chicken swarm optimization, In: International conference in swarm intelligence, Springer, Cham, pp 86-94
go back to reference Mohd N, Yahya Y (2018) A data mining approach for prediction of students' depression using logistic regression and artificial neural network, In: Proceedings of the 12th international conference on ubiquitous information management and communication, pp 1–5 Mohd N, Yahya Y (2018) A data mining approach for prediction of students' depression using logistic regression and artificial neural network, In: Proceedings of the 12th international conference on ubiquitous information management and communication, pp 1–5
go back to reference Patil SM, Raut CM, Pande AP, Yeruva AR, Morwani H (2022) An efficient approach for object detection using deep learning. J Pharm Negat Results 13(9):563–572CrossRef Patil SM, Raut CM, Pande AP, Yeruva AR, Morwani H (2022) An efficient approach for object detection using deep learning. J Pharm Negat Results 13(9):563–572CrossRef
go back to reference Qiu L, Liu Y, Hu Q, Liu Y (2019) Student dropout prediction in massive open online courses by convolutional neural networks. Soft Comput 23(20):10287–10301CrossRef Qiu L, Liu Y, Hu Q, Liu Y (2019) Student dropout prediction in massive open online courses by convolutional neural networks. Soft Comput 23(20):10287–10301CrossRef
go back to reference Ramanathan L, Geetha A, Khalid M, Swarnalatha P (2017) Student performance prediction model based on lion-wolf neural network. Int J Intell Eng Syst 10(1):114–123 Ramanathan L, Geetha A, Khalid M, Swarnalatha P (2017) Student performance prediction model based on lion-wolf neural network. Int J Intell Eng Syst 10(1):114–123
go back to reference Stewart-Brown S, Evans J, Patterson J, Petersen S, Doll H, Balding J, Regis D (2000) The health of students in institutes of higher education: an important and neglected public health problem? J Public Health 22(4):492–499CrossRef Stewart-Brown S, Evans J, Patterson J, Petersen S, Doll H, Balding J, Regis D (2000) The health of students in institutes of higher education: an important and neglected public health problem? J Public Health 22(4):492–499CrossRef
go back to reference Sun D, Mao Y, Du J, Xu P, Zheng Q, Sun H (2019) Deep learning for dropout prediction in MOOCs, In: IEEE eighth international conference on educational innovation through technology (EITT), pp 87–90 Sun D, Mao Y, Du J, Xu P, Zheng Q, Sun H (2019) Deep learning for dropout prediction in MOOCs, In: IEEE eighth international conference on educational innovation through technology (EITT), pp 87–90
go back to reference Veeramanickam MRM, Mohanapriya M, Pandey BK, Akhade S, Kale SA, Patil R, Vigneshwar M (2019) Map-reduce framework based cluster architecture for academic student’s performance prediction using cumulative dragonfly based neural network. Clust Comput 22(1):1259–1275CrossRef Veeramanickam MRM, Mohanapriya M, Pandey BK, Akhade S, Kale SA, Patil R, Vigneshwar M (2019) Map-reduce framework based cluster architecture for academic student’s performance prediction using cumulative dragonfly based neural network. Clust Comput 22(1):1259–1275CrossRef
go back to reference Verma G, Adhikari S, Khanduri V, Tandon S, Rawat S, Singh P (2020) Machine learning model for prediction of stress levels in students of technical education, In: The proceeding of international conference on applied mathematics and computational sciences Verma G, Adhikari S, Khanduri V, Tandon S, Rawat S, Singh P (2020) Machine learning model for prediction of stress levels in students of technical education, In: The proceeding of international conference on applied mathematics and computational sciences
go back to reference Wang X, Wu P, Liu G, Huang Q, Hu X, Xu H (2019) Learning performance prediction via convolutional GRU and explainable neural networks in e-learning environments. Computing 101(6):587–604MathSciNetCrossRef Wang X, Wu P, Liu G, Huang Q, Hu X, Xu H (2019) Learning performance prediction via convolutional GRU and explainable neural networks in e-learning environments. Computing 101(6):587–604MathSciNetCrossRef
go back to reference Yu J, Liu G (2020) Knowledge extraction and insertion to deep belief network for gearbox fault diagnosis. Knowl-Based Syst 197:105883CrossRef Yu J, Liu G (2020) Knowledge extraction and insertion to deep belief network for gearbox fault diagnosis. Knowl-Based Syst 197:105883CrossRef
go back to reference Zhao Y, Wu J, Liu C (2014) Dache: a data aware caching for big-data applications using the MapReduce framework. Tsinghua Sci Technol 19(1):39–50CrossRef Zhao Y, Wu J, Liu C (2014) Dache: a data aware caching for big-data applications using the MapReduce framework. Tsinghua Sci Technol 19(1):39–50CrossRef
go back to reference Zhu H, You X, Liu S (2019) Multiple ant colony optimization based on pearson correlation coefficient. IEEE Access 7:61628–61638CrossRef Zhu H, You X, Liu S (2019) Multiple ant colony optimization based on pearson correlation coefficient. IEEE Access 7:61628–61638CrossRef
Metadata
Title
Adaptive-CSSA: adaptive-chicken squirrel search algorithm driven deep belief network for student stress-level and drop out prediction with MapReduce framework
Authors
V. Kamakshamma
K. F. Bharati
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01090-z

Premium Partner