Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

26-02-2020 | Research Article-Electrical Engineering | Issue 8/2020

Arabian Journal for Science and Engineering 8/2020

Adaptive Detection of Islanding and Power Quality Disturbances in a Grid-Integrated Photovoltaic System

Journal:
Arabian Journal for Science and Engineering > Issue 8/2020
Authors:
Satya Prakash, Shubhi Purwar, Soumya R. Mohanty
Important notes
This work is supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), India, under the Project No. SB/S3/EECE/089/2015.

Abstract

Global photovoltaic (PV) generation is increasing steadily at about \(30\%\) growth rate over the last decade. Depleting environment owing to extensive use of fossil fuels is expected to further continue with this growth rate. With such large PV penetration in the utility grid, perturbation-based active islanding detection methods are becoming detrimental, marred with issues like degradation of power quality and deteriorating system stability. This paper uses morphological filters combined with empirical mode decomposition (EMD) to implement an efficient adaptive signal processing-based detection for islanding as well as PQ disturbances. Two-stage morphological median filter (MMF-2) is used to overcome the noise vulnerability associated with EMD. Field programmable gate array implementation is developed for real-time detection of PQ events. Classification of power quality disturbances is obtained using a support vector machine classifier. The results demonstrate fast and accurate real-time detection under various noisy scenarios without applying any parameter perturbations.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

Arabian Journal for Science and Engineering 8/2020 Go to the issue

Research Article-Computer Engineering and Computer Science

Intelligent Analysis of Arabic Tweets for Detection of Suspicious Messages

Premium Partners

    Image Credits