Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Photonic Network Communications 3/2020

30-08-2020 | Original Paper

Adaptive FH optimization in MEC-assisted 5G environments

Authors: Viktoria-Maria Alevizaki, Markos Anastasopoulos, Anna Tzanakaki, Dimitra Simeonidou

Published in: Photonic Network Communications | Issue 3/2020

Login to get access
share
SHARE

Abstract

To address the limitations of current radio access networks (RANs), centralized RANs adopting the concept of flexible splits of the BBU functions between radio units (RUs) and the central unit have been proposed. This concept can be implemented combining both the Mobile Edge Computing model and relatively large-scale centralized Data Centers. This architecture requires high-bandwidth/low-latency optical transport networks interconnecting RUs and compute resources adopting SDN control. This paper proposes a novel mathematical model based on Evolutionary Game Theory that allows to dynamically identify the optimal split option with the objective to unilaterally minimize the infrastructure operational costs in terms of power consumption. Optimal placement of the SDN controllers is determined by a heuristic algorithm in such a way that guarantees the stability of the whole system. Finally, multi-agent learning methods were investigated in order to expand the model to more sophisticated scenarios where many RUs with limited information are interacting.
Literature
13.
go back to reference Noormohammadpour, M., Raghavendra, C.S.: "Datacenter traffic control: understanding techniques and tradeoffs. IEEE Commun. Surv. Tutor. 20(2), 1492–1525 (2018) CrossRef Noormohammadpour, M., Raghavendra, C.S.: "Datacenter traffic control: understanding techniques and tradeoffs. IEEE Commun. Surv. Tutor. 20(2), 1492–1525 (2018) CrossRef
14.
go back to reference Weibull, J.: Evolutionary Game Theory. MIT Press, Cambridge (2004) MATH Weibull, J.: Evolutionary Game Theory. MIT Press, Cambridge (2004) MATH
18.
go back to reference Anastasopoulos, N.P., Anastasopoulos, M.P.: The evolutionary dynamics of audit. Eur. J. Oper. Res. 216, 469–476 (2012) MathSciNetCrossRef Anastasopoulos, N.P., Anastasopoulos, M.P.: The evolutionary dynamics of audit. Eur. J. Oper. Res. 216, 469–476 (2012) MathSciNetCrossRef
20.
go back to reference Wiering, M., Otterlo, M.: Reinforcement Learning. Springer, Berlin (2014) Wiering, M., Otterlo, M.: Reinforcement Learning. Springer, Berlin (2014)
21.
go back to reference Hernandez-Leal, P., Kaisers, M., Baarslag, T., Munoz de Cote, E.: A survey of learning in multiagent environments: dealing with non-stationarity.  arXiv vol. 170709183, 2017. Accessed 5 Nov. 2019 Hernandez-Leal, P., Kaisers, M., Baarslag, T., Munoz de Cote, E.: A survey of learning in multiagent environments: dealing with non-stationarity.  arXiv vol. 170709183, 2017. Accessed 5 Nov. 2019
24.
go back to reference Tuyls, K., Hoen, P.J.T., Vanschoenwinkel, B.: An evolutionary dynamical analysis of multi-agent learning in iterated games. J. Auton. Agents Multi Agent Syst. 12(1), 115–153 (2006) CrossRef Tuyls, K., Hoen, P.J.T., Vanschoenwinkel, B.: An evolutionary dynamical analysis of multi-agent learning in iterated games. J. Auton. Agents Multi Agent Syst. 12(1), 115–153 (2006) CrossRef
25.
go back to reference Panait, L., Tuyls, K., Luke, S.: Theoretical advantages of lenient learners: an evolutionary game theoretic perspective. J. Mach. Learn. Res. 9, 423–457 (2008) MathSciNetMATH Panait, L., Tuyls, K., Luke, S.: Theoretical advantages of lenient learners: an evolutionary game theoretic perspective. J. Mach. Learn. Res. 9, 423–457 (2008) MathSciNetMATH
26.
go back to reference Klos, T., Ahee, G.J.V., Tuyls, K.: Evolutionary dynamics of regret minimization. Technical report, 2010 Klos, T., Ahee, G.J.V., Tuyls, K.: Evolutionary dynamics of regret minimization. Technical report, 2010
27.
go back to reference Wübben, et al.: Benefits and impact of cloud computing on 5g signal processing. In: IEEE Signal Processing Magazine, pp. 35–44, November 2014 Wübben, et al.: Benefits and impact of cloud computing on 5g signal processing. In: IEEE Signal Processing Magazine, pp. 35–44, November 2014
28.
go back to reference Desset, C., et al.: Flexible power modeling of LTE base stations. In: IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, April, 2012 Desset, C., et al.: Flexible power modeling of LTE base stations. In: IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, April, 2012
29.
go back to reference Xia, Y., Tse, D.: Inference of link delay in communication networks. IEEE J. Sel. Areas Commun. 24(12), 2235–2248 (2006) CrossRef Xia, Y., Tse, D.: Inference of link delay in communication networks. IEEE J. Sel. Areas Commun. 24(12), 2235–2248 (2006) CrossRef
30.
go back to reference Ben Khalifa, N., et.al.: Random time delays in evolutionary game dynamics. In: Proceedings of IEEE CDC, Osaka, Japan, pp. 3840–3845 Ben Khalifa, N., et.al.: Random time delays in evolutionary game dynamics. In: Proceedings of IEEE CDC, Osaka, Japan, pp. 3840–3845
32.
go back to reference Baliga, J., et al.: Energy consumption in optical IP networks. J. Lightwave Technol. 27, 2391–2403 (2009) CrossRef Baliga, J., et al.: Energy consumption in optical IP networks. J. Lightwave Technol. 27, 2391–2403 (2009) CrossRef
Metadata
Title
Adaptive FH optimization in MEC-assisted 5G environments
Authors
Viktoria-Maria Alevizaki
Markos Anastasopoulos
Anna Tzanakaki
Dimitra Simeonidou
Publication date
30-08-2020
Publisher
Springer US
Published in
Photonic Network Communications / Issue 3/2020
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-020-00906-8