Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

Adaptive Incentive Allocation for Influence-Aware Proactive Recommendation

Authors : Shiqing Wu, Quan Bai, Byeong Ho Kang

Published in: PRICAI 2019: Trends in Artificial Intelligence

Publisher: Springer International Publishing

share
SHARE

Abstract

Most recommendation systems are designed for seeking users’ demands and preferences, whereas impotent to affect users’ decisions for realizing the system-level objective. In this light, we intend to propose a generic concept named ‘proactive recommendation’, which focuses on not only maintaining users’ satisfaction but also realizing system-level objectives. In this paper, we claim the proactive recommendation is crucial for the scenario where the system objectives are required to realize. To realize proactive recommendation, we intend to affect users’ decision-making by providing incentives and utilizing social influence between users. We design an approach for discovering the influential users in an unknown network, and a dynamic game-based mechanism that allocates incentives to users dynamically. The preliminary experimental results show the effectiveness of the proposed approach.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005) CrossRef Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005) CrossRef
2.
go back to reference Axsen, J., Orlebar, C., Skippon, S.: Social influence and consumer preference formation for pro-environmental technology: the case of a uk workplace electric-vehicle study. Ecol. Econ. 95, 96–107 (2013) CrossRef Axsen, J., Orlebar, C., Skippon, S.: Social influence and consumer preference formation for pro-environmental technology: the case of a uk workplace electric-vehicle study. Ecol. Econ. 95, 96–107 (2013) CrossRef
3.
go back to reference Biswas, A., Jain, S., Mandal, D., Narahari, Y.: A truthful budget feasible multi-armed bandit mechanism for crowdsourcing time critical tasks. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 1101–1109 (2015) Biswas, A., Jain, S., Mandal, D., Narahari, Y.: A truthful budget feasible multi-armed bandit mechanism for crowdsourcing time critical tasks. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 1101–1109 (2015)
4.
go back to reference Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013) CrossRef Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013) CrossRef
5.
go back to reference Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 43–52 (1998) Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 43–52 (1998)
7.
go back to reference Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978) CrossRef Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978) CrossRef
8.
go back to reference Homans, G.C.: Social Behavior: Its Elementary Forms. Harcourt Brace Jovanovich, San Diego (1974) Homans, G.C.: Social Behavior: Its Elementary Forms. Harcourt Brace Jovanovich, San Diego (1974)
10.
go back to reference Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 539–547. Curran Associates, Inc., New York (2012) Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 539–547. Curran Associates, Inc., New York (2012)
11.
go back to reference Mohan Raj, P., et al.: Brand preferences of newspapers-factor analysis approach. Res. J. Econ. Bus. Stud. 5(11), 17–26 (2016) Mohan Raj, P., et al.: Brand preferences of newspapers-factor analysis approach. Res. J. Econ. Bus. Stud. 5(11), 17–26 (2016)
12.
go back to reference Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artif. Intell. Rev. 13(5–6), 393–408 (1999) CrossRef Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artif. Intell. Rev. 13(5–6), 393–408 (1999) CrossRef
14.
go back to reference Sengvong, S., Bai, Q.: Persuasive public-friendly route recommendation with flexible rewards. In: 2017 IEEE International Conference on Agents (ICA), pp. 109–114 (2017) Sengvong, S., Bai, Q.: Persuasive public-friendly route recommendation with flexible rewards. In: 2017 IEEE International Conference on Agents (ICA), pp. 109–114 (2017)
16.
go back to reference Singla, A., Santoni, M., Bartók, G., Mukerji, P., Meenen, M., Krause, A.: Incentivizing users for balancing bike sharing systems. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 723–729 (2015) Singla, A., Santoni, M., Bartók, G., Mukerji, P., Meenen, M., Krause, A.: Incentivizing users for balancing bike sharing systems. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 723–729 (2015)
17.
go back to reference Tran-Thanh, L., Chapman, A., Munoz De Cote Flores Luna, J.E., Rogers, A., Jennings, N.R.: Epsilon-first policies for budget-limited multi-armed bandits. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pp. 1211–1216 (2010) Tran-Thanh, L., Chapman, A., Munoz De Cote Flores Luna, J.E., Rogers, A., Jennings, N.R.: Epsilon-first policies for budget-limited multi-armed bandits. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pp. 1211–1216 (2010)
18.
go back to reference Tran-Thanh, L., Chapman, A.C., Rogers, A., Jennings, N.R.: Knapsack based optimal policies for budget-limited multi-armed bandits. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 1134–1140 (2012) Tran-Thanh, L., Chapman, A.C., Rogers, A., Jennings, N.R.: Knapsack based optimal policies for budget-limited multi-armed bandits. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 1134–1140 (2012)
19.
go back to reference Tran-Thanh, L., Stein, S., Rogers, A., Jennings, N.R.: Efficient crowdsourcing of unknown experts using bounded multi-armed bandits. Artif. Intell. 214, 89–111 (2014) MathSciNetCrossRef Tran-Thanh, L., Stein, S., Rogers, A., Jennings, N.R.: Efficient crowdsourcing of unknown experts using bounded multi-armed bandits. Artif. Intell. 214, 89–111 (2014) MathSciNetCrossRef
20.
go back to reference Wu, S., Bai, Q., Sengvong, S.: GreenCommute: an influence-aware persuasive recommendation approach for public-friendly commute options. J. Syst. Sci. Syst. Eng. 27(2), 250–264 (2018) CrossRef Wu, S., Bai, Q., Sengvong, S.: GreenCommute: an influence-aware persuasive recommendation approach for public-friendly commute options. J. Syst. Sci. Syst. Eng. 27(2), 250–264 (2018) CrossRef
21.
go back to reference Yu, C., Zhang, M., Ren, F., Luo, X.: Emergence of social norms through collective learning in networked agent societies. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent Systems, pp. 475–482 (2013) Yu, C., Zhang, M., Ren, F., Luo, X.: Emergence of social norms through collective learning in networked agent societies. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent Systems, pp. 475–482 (2013)
Metadata
Title
Adaptive Incentive Allocation for Influence-Aware Proactive Recommendation
Authors
Shiqing Wu
Quan Bai
Byeong Ho Kang
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-29908-8_51

Premium Partner