Skip to main content
Top

2017 | OriginalPaper | Chapter

Adaptive Learning Techniques for Landslide Forecasting and the Validation in a Real World Deployment https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-53483-1_52/MediaObjects/440499_1_En_52_Figa_HTML.png

Authors : T. Hemalatha, Maneesha Vinodini Ramesh, Venkat P. Rangan

Published in: Advancing Culture of Living with Landslides

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A forecasting algorithm using Support Vector Regression (SVR) used to forecast potential landslides in Munnar region of Western Ghats, India (10.0892 N, 77.0597 E) is presented in this paper. Forecasting for the possibility of landslide is accomplished by forecasting the pore-water pressure (PWP) 24 h ahead of time, at different locations and across soil layers under the ground at varying depths, and computing Factor of Safety (FoS) of the slope. It is done by learning from the real-time sensor data gathered from Amrita University’s Wireless Sensor Network (WSN) system deployed in Western Ghats for monitoring and early warning of landslides. We use two variations of SVR, SVR-Historic and SVR-Adaptive. SVR-Historic algorithm is trained with the data from July 2011 to December 2015 and tested for the period from January to November 2016. SVR-Adaptive algorithm is adaptively trained from July-2011 onwards and tested for the period from January to November 2016. PWP and the computed FoS from both the algorithms are compared with the actual PWP and FoS data and the Mean Square Error (MSE) for the SVR-Historic model is found to be 48.726 and 0.002 whereas the MSE for SVR-Adaptive model is found to be 12.438 and 0.0007 respectively. The PWP and the computed FoS from both the algorithms are tested for correlation using Pearson’s correlation test, with 95% confidence interval and the coefficients for PWP is found to be 0.804 and 0.959 respectively with p-value of 2.2e−16, whereas for FoS it is 0.802 and 0.955 with p-value of 2.2e−16. The confidence intervals for PWP and FoS from both the models is 0.763 to 0.839 and 0.950 to 0.969 respectively. Among the two forecasting models, SVR-Adaptive model performs better with a low MSE of 12.438 and 0.0007 in forecasting PWP and the computed FoS values respectively and correlates with the real-time data ~95% of the times. Application of this forecasting algorithm in real-world can thus provide 24 h extra time for early warning which is a boon for government and public to prepare for landslides after early warnings.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bozzano F, Cipriani I, Mazzanti P, Prestininzi A (2011) Displacement patterns of a landslide affected by human activities: insights from ground-based InSAR monitoring. Nat Hazards 59(3):1377–1396CrossRef Bozzano F, Cipriani I, Mazzanti P, Prestininzi A (2011) Displacement patterns of a landslide affected by human activities: insights from ground-based InSAR monitoring. Nat Hazards 59(3):1377–1396CrossRef
go back to reference Brocca L, Ponziani F, Melone F, Moramarco T, Berni N, Wagner W (2012) Improving landslide movement forecasting using ASCAT-derived soil moisture data. In: EGU general assembly conference abstracts, vol 14, p 2307 Brocca L, Ponziani F, Melone F, Moramarco T, Berni N, Wagner W (2012) Improving landslide movement forecasting using ASCAT-derived soil moisture data. In: EGU general assembly conference abstracts, vol 14, p 2307
go back to reference Caine N (1980) The rainfall intensity: duration control of shallow landslides and debris flows. Geografiska Ann Ser A Phys Geography, 23–27CrossRef Caine N (1980) The rainfall intensity: duration control of shallow landslides and debris flows. Geografiska Ann Ser A Phys Geography, 23–27CrossRef
go back to reference Chae BG, Lee JH, Park HJ, Choi J (2015) A method for predicting the factor of safety of an infinite slope based on the depth ratio of the wetting front induced by rainfall infiltration. Nat Hazards Earth Sys Sci 15(8):1835–1849CrossRef Chae BG, Lee JH, Park HJ, Choi J (2015) A method for predicting the factor of safety of an infinite slope based on the depth ratio of the wetting front induced by rainfall infiltration. Nat Hazards Earth Sys Sci 15(8):1835–1849CrossRef
go back to reference Crozier MJ (1999) Prediction of rainfall-triggered landslides: A test of the antecedent water status model. Earth Surf Proc Land 24(9):825–833CrossRef Crozier MJ (1999) Prediction of rainfall-triggered landslides: A test of the antecedent water status model. Earth Surf Proc Land 24(9):825–833CrossRef
go back to reference Dore MH (2003) Forecasting the conditional probabilities of natural disasters in Canada as a guide for disaster preparedness. Nat Hazards 28(2–3):249–269CrossRef Dore MH (2003) Forecasting the conditional probabilities of natural disasters in Canada as a guide for disaster preparedness. Nat Hazards 28(2–3):249–269CrossRef
go back to reference Dostál I, Putiška R, Kušnirák D (2014) Determination of shear surface of landslides using electrical resistivity tomography. Contrib Geophys Geodesy 44(2):133–147CrossRef Dostál I, Putiška R, Kušnirák D (2014) Determination of shear surface of landslides using electrical resistivity tomography. Contrib Geophys Geodesy 44(2):133–147CrossRef
go back to reference Gabet EJ, Burbank DW, Putkonen JK, Pratt-Sitaula BA, Ojha T (2004) Rainfall thresholds for landsliding in the Himalayas of Nepal. Geomorphol 63(3):131–143CrossRef Gabet EJ, Burbank DW, Putkonen JK, Pratt-Sitaula BA, Ojha T (2004) Rainfall thresholds for landsliding in the Himalayas of Nepal. Geomorphol 63(3):131–143CrossRef
go back to reference Herrera G, Fernández-Merodo JA, Mulas J, Pastor M, Luzi G, Monserrat O (2009) A landslide forecasting model using ground based SAR data: The Portalet case study. Eng Geol 105(3):220–230CrossRef Herrera G, Fernández-Merodo JA, Mulas J, Pastor M, Luzi G, Monserrat O (2009) A landslide forecasting model using ground based SAR data: The Portalet case study. Eng Geol 105(3):220–230CrossRef
go back to reference Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910CrossRef Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910CrossRef
go back to reference Kuriakose SL, Sankar G, Muraleedharan C (2009) History of landslide susceptibility and a chorology of landslide-prone areas in the Western Ghats of Kerala. India Environ Geol 57(7):1553–1568CrossRef Kuriakose SL, Sankar G, Muraleedharan C (2009) History of landslide susceptibility and a chorology of landslide-prone areas in the Western Ghats of Kerala. India Environ Geol 57(7):1553–1568CrossRef
go back to reference Loew S, Gschwind S, Gischig V, Keller-Signer A, Valenti G (2015). Monitoring and early warning of the 2012 Preonzo catastrophic rockslope failure. Landslides, 1–14 Loew S, Gschwind S, Gischig V, Keller-Signer A, Valenti G (2015). Monitoring and early warning of the 2012 Preonzo catastrophic rockslope failure. Landslides, 1–14
go back to reference Lukose Kuriakose S, Sankar G, Muraleedharan C (2010) Landslide fatalities in the Western Ghats of Kerala, India. In: EGU general assembly conference abstracts, vol 12, p 8645 Lukose Kuriakose S, Sankar G, Muraleedharan C (2010) Landslide fatalities in the Western Ghats of Kerala, India. In: EGU general assembly conference abstracts, vol 12, p 8645
go back to reference Ramesh MV (2014a) Design, development, and deployment of a wireless sensor network for detection of landslides. Ad Hoc Netw 13:2–18CrossRef Ramesh MV (2014a) Design, development, and deployment of a wireless sensor network for detection of landslides. Ad Hoc Netw 13:2–18CrossRef
go back to reference Ramesh MV (2014) U.S. Patent No. 8,692,668. U.S. Patent and Trademark Office, Washington, DC Ramesh MV (2014) U.S. Patent No. 8,692,668. U.S. Patent and Trademark Office, Washington, DC
go back to reference Ramesh MV, Vasudevan N (2012) The deployment of deep-earth sensor probes for landslide detection. Landslides 9(4):457–474CrossRef Ramesh MV, Vasudevan N (2012) The deployment of deep-earth sensor probes for landslide detection. Landslides 9(4):457–474CrossRef
go back to reference Russell SJ, Norvig P, Canny JF, Malik JM, Edwards DD (2003) Artificial intelligence: a modern approach, vol 2. Prentice hall, Upper Saddle River Russell SJ, Norvig P, Canny JF, Malik JM, Edwards DD (2003) Artificial intelligence: a modern approach, vol 2. Prentice hall, Upper Saddle River
go back to reference Schmidt J, Turek G, Clark MP, Uddstrom M, Dymond JR (2008) Probabilistic forecasting of shallow, rainfall-triggered landslides using real-time numerical weather predictions. Nat Hazards Earth Sys Sci 8(2):349–357CrossRef Schmidt J, Turek G, Clark MP, Uddstrom M, Dymond JR (2008) Probabilistic forecasting of shallow, rainfall-triggered landslides using real-time numerical weather predictions. Nat Hazards Earth Sys Sci 8(2):349–357CrossRef
go back to reference Segoni S, Battistini A, Rossi G, Rosi A, Lagomarsino D, Catani F, Moretti S, Casagli N (2015) Technical note: an operational landslide early warning system at regional scale based on space–time-variable rainfall thresholds. Nat Hazards Earth Sys Sci, 15(4):853–861CrossRef Segoni S, Battistini A, Rossi G, Rosi A, Lagomarsino D, Catani F, Moretti S, Casagli N (2015) Technical note: an operational landslide early warning system at regional scale based on space–time-variable rainfall thresholds. Nat Hazards Earth Sys Sci, 15(4):853–861CrossRef
go back to reference Soman KP, Loganathan R, Ajay V (2009) Machine learning with SVM and other kernel methods. PHI Learning Pvt. Ltd, 477. ISBN:978-81-203-3435-9 Soman KP, Loganathan R, Ajay V (2009) Machine learning with SVM and other kernel methods. PHI Learning Pvt. Ltd, 477. ISBN:978-81-203-3435-9
go back to reference Vijith H, Madhu G (2008) Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS. Environ Geol 55(7):1397–1405CrossRef Vijith H, Madhu G (2008) Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS. Environ Geol 55(7):1397–1405CrossRef
Metadata
Title
Adaptive Learning Techniques for Landslide Forecasting and the Validation in a Real World Deployment
Authors
T. Hemalatha
Maneesha Vinodini Ramesh
Venkat P. Rangan
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-53483-1_52