Skip to main content
Top

2016 | OriginalPaper | Chapter

10. Adaptive Logistic Regression Modeling of Multivariate Dichotomous and Polytomous Outcomes

Authors : George J. Knafl, Kai Ding

Published in: Adaptive Regression for Modeling Nonlinear Relationships

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter formulates and demonstrates adaptive fractional polynomial modeling of means and dispersions for repeatedly measured dichotomous and polytomous outcomes with two or more values. Marginal modeling extends from the multivariate normal outcome context to the multivariate dichotomous and polytomous outcome context. However, due to the complexity in general of computing likelihoods and quasi-likelihoods (as needed to account for non-unit dispersions) for general multivariate marginal modeling, generalized estimating equations (GEE) techniques are often used instead, thereby avoiding computation of likelihoods and quasi-likelihoods. This complicates the extension of adaptive modeling to the GEE context since it is based on cross-validation (CV) scores computed from likelihoods or likelihood-like functions, but a readily computed extended likelihood is formulated for use in adaptive GEE-based modeling of multivariate dichotomous and polytomous outcomes. Conditional modeling also extends to the multivariate dichotomous and polytomous outcome context, both transition modeling and general conditional modeling. In contrast to marginal GEE-based modeling, conditional modeling of means for multivariate dichotomous and polytomous outcomes with unit dispersions is based on pseudolikelihoods that can be used to compute pseudolikelihood CV (PLCV) scores on which to base adaptive transition and general conditional modeling of multivariate dichotomous and polytomous outcomes. These marginal and conditional models can be extended to model dispersions as well as means. Example analyses of these kinds are presented of post-baseline respiratory status over time for patients with respiratory disorder in terms of the baseline respiratory status, time, and being on an active as opposed to a placebo treatment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Chaganty, N. R. (1997). An alternative approach to the analysis of longitudinal data via generalized estimating equations. Journal of Statistical Planning and Inference, 63, 39–54.MathSciNetCrossRefMATH Chaganty, N. R. (1997). An alternative approach to the analysis of longitudinal data via generalized estimating equations. Journal of Statistical Planning and Inference, 63, 39–54.MathSciNetCrossRefMATH
go back to reference Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2011). Applied longitudinal analysis (2nd ed.). Hoboken, NJ: Wiley.MATH Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2011). Applied longitudinal analysis (2nd ed.). Hoboken, NJ: Wiley.MATH
go back to reference Koch, G. G., Carr, C. F., Amara, I. A., Stokes, M. E., & Uryniak, T. J. (1989). Categorical data analysis. In D. A. Berry (Ed.), Statistical methodology in the pharmaceutical sciences (pp. 391–475). New York: Marcel Dekker. Koch, G. G., Carr, C. F., Amara, I. A., Stokes, M. E., & Uryniak, T. J. (1989). Categorical data analysis. In D. A. Berry (Ed.), Statistical methodology in the pharmaceutical sciences (pp. 391–475). New York: Marcel Dekker.
go back to reference Lipsitz, S. R., Kim, K., & Zhao, L. (1994). Analysis of repeated categorical data using generalized estimating equations. Statistics in Medicine, 13, 1149–1163.CrossRef Lipsitz, S. R., Kim, K., & Zhao, L. (1994). Analysis of repeated categorical data using generalized estimating equations. Statistics in Medicine, 13, 1149–1163.CrossRef
go back to reference McCullagh, P., & Nelder, J. A. (1999). Generalized linear models (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC.MATH McCullagh, P., & Nelder, J. A. (1999). Generalized linear models (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC.MATH
go back to reference Miller, M. E., Davis, C. S., & Landis, J. R. (1993). The analysis of longitudinal polytomous generalized estimating equations and connections with weighted least squares. Biometrics, 49, 1033–1044.CrossRefMATH Miller, M. E., Davis, C. S., & Landis, J. R. (1993). The analysis of longitudinal polytomous generalized estimating equations and connections with weighted least squares. Biometrics, 49, 1033–1044.CrossRefMATH
go back to reference Molenberghs, G., & Verbeke, G. (2006). Models for discrete longitudinal data. New York: Springer.MATH Molenberghs, G., & Verbeke, G. (2006). Models for discrete longitudinal data. New York: Springer.MATH
go back to reference SAS Institute. (2004). SAS/STAT 9.1 user’s guide. Cary, NC: SAS Institute. SAS Institute. (2004). SAS/STAT 9.1 user’s guide. Cary, NC: SAS Institute.
go back to reference Stokes, M. E., Davis, C. S., & Koch, G. G. (2012). Categorical data analysis using the SAS system (3rd ed.). Cary, NC: SAS Institute. Stokes, M. E., Davis, C. S., & Koch, G. G. (2012). Categorical data analysis using the SAS system (3rd ed.). Cary, NC: SAS Institute.
Metadata
Title
Adaptive Logistic Regression Modeling of Multivariate Dichotomous and Polytomous Outcomes
Authors
George J. Knafl
Kai Ding
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-33946-7_10

Premium Partner