Skip to main content
Top
Published in: Soft Computing 16/2017

23-02-2016 | Methodologies and Application

Adaptive multi-context cooperatively coevolving particle swarm optimization for large-scale problems

Authors: Ruo-Li Tang, Zhou Wu, Yan-Jun Fang

Published in: Soft Computing | Issue 16/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel adaptive multi-context cooperatively coevolving particle swarm optimization (AM-CCPSO) algorithm is proposed in an attempt to improve the performance on solving large-scale optimization problems (LSOP). Due to the curse of dimensionality, most optimization algorithms show their weaknesses on LSOP, and the cooperative co-evolution (CC) is often utilized to overcome such weaknesses. The basic CC framework employs one context vector for cooperatively, but greedily coevolving different subcomponents, which sometimes fails to find global optimum, especially on some complex non-separable LSOP. In the AM-CCPSO, more than one context vectors are employed to provide robust and effective co-evolution. These vectors are selected with respect to each particle of each subcomponent according to their own adaptive probabilities. In the AM-CCPSO, a new PSO updating rule is also proposed to exploit “four best positions” via Gaussian sampling. On a comprehensive set of benchmarks (up to 1000 real-valued variables), as well as on a real world application, the performance of AM-CCPSO can rival several state-of-the-art evolutionary algorithms. Experimental results indicate that the novel adaptive multi-context CC framework is effective to improve the performance of PSO on solving LSOP and can be generally extended in other evolutionary algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ali MM et al (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J Glob Optim 31(4):635–672MathSciNetCrossRefMATH Ali MM et al (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J Glob Optim 31(4):635–672MathSciNetCrossRefMATH
go back to reference Beheshti Z, Shamsuddin SMH (2014) CAPSO: centripetal accelerated particle swarm optimization. Inform Sci 258:54–79MathSciNetCrossRef Beheshti Z, Shamsuddin SMH (2014) CAPSO: centripetal accelerated particle swarm optimization. Inform Sci 258:54–79MathSciNetCrossRef
go back to reference Beheshti Z, Shamsuddin SMH, Hasan S (2013) MPSO: median-oriented particle swarm optimization. Appl Math Comput 219(11):5817–5836MathSciNetMATH Beheshti Z, Shamsuddin SMH, Hasan S (2013) MPSO: median-oriented particle swarm optimization. Appl Math Comput 219(11):5817–5836MathSciNetMATH
go back to reference Benyoucef AS et al (2015) Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. Appl Soft Comput 32:38–48CrossRef Benyoucef AS et al (2015) Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. Appl Soft Comput 32:38–48CrossRef
go back to reference Brest J et al (2007) Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput 11(7):617–629CrossRefMATH Brest J et al (2007) Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput 11(7):617–629CrossRefMATH
go back to reference Campos M, Krohling RA, Enriquez I (2014) Bare bones particle swarm optimization with scale matrix adaptation. IEEE Trans Cybern 44(9):1567–1578CrossRef Campos M, Krohling RA, Enriquez I (2014) Bare bones particle swarm optimization with scale matrix adaptation. IEEE Trans Cybern 44(9):1567–1578CrossRef
go back to reference Chuang YC, Chen CT, Hwang C (2015) A real-coded genetic algorithm with a direction-based crossover operator. Inform Sci 305:320–348CrossRef Chuang YC, Chen CT, Hwang C (2015) A real-coded genetic algorithm with a direction-based crossover operator. Inform Sci 305:320–348CrossRef
go back to reference Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73CrossRef Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73CrossRef
go back to reference Eberhart RC, Shi Y(2000) Comparing inertia weights and constriction factors in particle swarm optimization. Proc 2000 Congr Evol Comput, pp 84–89 Eberhart RC, Shi Y(2000) Comparing inertia weights and constriction factors in particle swarm optimization. Proc 2000 Congr Evol Comput, pp 84–89
go back to reference Epitropakis MG et al (2011) Enhancing differential evolution utilizing proximity-based mutation operators. IEEE Trans Evol Comput 15(1):99–119CrossRef Epitropakis MG et al (2011) Enhancing differential evolution utilizing proximity-based mutation operators. IEEE Trans Evol Comput 15(1):99–119CrossRef
go back to reference Fu W et al (2011) Research on engineering analytical model of solar cell. Trans China Electrotech Soc 26(10):211–216 Fu W et al (2011) Research on engineering analytical model of solar cell. Trans China Electrotech Soc 26(10):211–216
go back to reference Gagneur J et al (2004) Modular decomposition of protein–protein interaction networks. Genome Biol 5(8):R57.1–R57.12 Gagneur J et al (2004) Modular decomposition of protein–protein interaction networks. Genome Biol 5(8):R57.1–R57.12
go back to reference Ganapathy K et al (2014) Hierarchical particle optimization with ortho-cyclic circles. Expert Syst Appl 41(7):3460–3476CrossRef Ganapathy K et al (2014) Hierarchical particle optimization with ortho-cyclic circles. Expert Syst Appl 41(7):3460–3476CrossRef
go back to reference Ghosh S et al (2012) On convergence of differential evolution over a class of continuous functions with unique global optimum. IEEE Trans Syst Man Cybern Part B Cybern 42(1):107–124CrossRef Ghosh S et al (2012) On convergence of differential evolution over a class of continuous functions with unique global optimum. IEEE Trans Syst Man Cybern Part B Cybern 42(1):107–124CrossRef
go back to reference Guo SM, Yang CC (2015) Enhancing differential evolution utilizing eigenvector-based crossover operator. IEEE Trans Evol Comput 19(1):31–49MathSciNetCrossRef Guo SM, Yang CC (2015) Enhancing differential evolution utilizing eigenvector-based crossover operator. IEEE Trans Evol Comput 19(1):31–49MathSciNetCrossRef
go back to reference Kennedy J (2003) Bare bones particle swarm. Proc IEEE Swarm Intelligence Symposium, pp 80–87 Kennedy J (2003) Bare bones particle swarm. Proc IEEE Swarm Intelligence Symposium, pp 80–87
go back to reference Kundu R et al (2014) An improved particle swarm optimizer with difference mean based perturbation. Neurocomputing 129:315–333CrossRef Kundu R et al (2014) An improved particle swarm optimizer with difference mean based perturbation. Neurocomputing 129:315–333CrossRef
go back to reference Kuo HC, Lin CH (2013) A directed genetic algorithm for global optimization. Appl Math Comput 219(2):7348–7364MathSciNetMATH Kuo HC, Lin CH (2013) A directed genetic algorithm for global optimization. Appl Math Comput 219(2):7348–7364MathSciNetMATH
go back to reference Liang J et al (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295CrossRef Liang J et al (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295CrossRef
go back to reference Liu H, Ding GY, Wang B (2014) Bare-bones particle swarm optimization with disruption operator. Appl Math Comput 238:106–122MathSciNetMATH Liu H, Ding GY, Wang B (2014) Bare-bones particle swarm optimization with disruption operator. Appl Math Comput 238:106–122MathSciNetMATH
go back to reference Li XD, Yao X (2009) Tackling high dimensional nonseparable optimization problems by cooperatively coevolving particle swarms. Proc IEEE Congr Evol Comput, pp 1546–1553 Li XD, Yao X (2009) Tackling high dimensional nonseparable optimization problems by cooperatively coevolving particle swarms. Proc IEEE Congr Evol Comput, pp 1546–1553
go back to reference Li XD, Yao X (2012) Cooperatively coevolving particle swarms for large-scale optimization. IEEE Trans Evol Comput 16(2):210–224MathSciNetCrossRef Li XD, Yao X (2012) Cooperatively coevolving particle swarms for large-scale optimization. IEEE Trans Evol Comput 16(2):210–224MathSciNetCrossRef
go back to reference Noman N, Iba H (2008) Accelerating differential evolution using an adaptive local search. IEEE Trans Evol Comput 12(1):107–125CrossRef Noman N, Iba H (2008) Accelerating differential evolution using an adaptive local search. IEEE Trans Evol Comput 12(1):107–125CrossRef
go back to reference Potter M, Jong KD (1994) A cooperative coevolutionary approach to function optimization. Proc 3rd Conf. Parallel Problem Solving Nat, pp 249–257 Potter M, Jong KD (1994) A cooperative coevolutionary approach to function optimization. Proc 3rd Conf. Parallel Problem Solving Nat, pp 249–257
go back to reference Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. Proc IEEE Congr Evol Comput, pp 1785–1791 Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. Proc IEEE Congr Evol Comput, pp 1785–1791
go back to reference Shi Y, Eberhert R (1999) Empirical study of particle swarm optimization. Proc 1999 IEEE Congr Evol Comput, vol 3, pp 1945–1950 Shi Y, Eberhert R (1999) Empirical study of particle swarm optimization. Proc 1999 IEEE Congr Evol Comput, vol 3, pp 1945–1950
go back to reference Tang K et al (2007) Benchmark functions for the CEC’2008 special session and competition on large-scale global optimization. Nature Inspired Computat. Applicat. Lab., Univ. Sci. Technol. China, Hefei, China, Tech. Rep. [Online]. Available: http://nical.ustc.edu.cn/cec08ss.php Tang K et al (2007) Benchmark functions for the CEC’2008 special session and competition on large-scale global optimization. Nature Inspired Computat. Applicat. Lab., Univ. Sci. Technol. China, Hefei, China, Tech. Rep. [Online]. Available: http://​nical.​ustc.​edu.​cn/​cec08ss.​php
go back to reference Tang PH, Tseng MH (2013) Adaptive directed mutation for real-coded genetic algorithms. Appl Soft Comput 13(1):600–614CrossRef Tang PH, Tseng MH (2013) Adaptive directed mutation for real-coded genetic algorithms. Appl Soft Comput 13(1):600–614CrossRef
go back to reference Tang RL, Fang YJ (2015) Modification of particle swarm optimization with human simulated property. Neurocomputing 153:319–331CrossRef Tang RL, Fang YJ (2015) Modification of particle swarm optimization with human simulated property. Neurocomputing 153:319–331CrossRef
go back to reference Van den Bergh F (2002) An analysis of particle swarm optimizers. Ph.D. dissertation, Dept. Comput. Sci., Univ. Pretoria, South Africa Van den Bergh F (2002) An analysis of particle swarm optimizers. Ph.D. dissertation, Dept. Comput. Sci., Univ. Pretoria, South Africa
go back to reference Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evolut Comput 8(3):225–239CrossRef Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evolut Comput 8(3):225–239CrossRef
go back to reference Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66CrossRef Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66CrossRef
go back to reference Wang Y, Hu RJ (2014) MPPT algorithm based on particle swarm optimization with hill climing method. Acta Energiae Solaris Sinica 35(1):149–153 Wang Y, Hu RJ (2014) MPPT algorithm based on particle swarm optimization with hill climing method. Acta Energiae Solaris Sinica 35(1):149–153
go back to reference Wu Z, Chow T (2013) Neighborhood field for cooperative optimization. Soft Comput 17(5):819–834CrossRef Wu Z, Chow T (2013) Neighborhood field for cooperative optimization. Soft Comput 17(5):819–834CrossRef
go back to reference Wu Z, Xia X, Wang B (2015) Improving building energy efficiency by multiobjective neighborhood field optimization. Energy Build 87:45–56CrossRef Wu Z, Xia X, Wang B (2015) Improving building energy efficiency by multiobjective neighborhood field optimization. Energy Build 87:45–56CrossRef
go back to reference Yang ZY, Tang K, Yao X (2008a) Multilevel cooperative coevolution for large-scale optimization. Proc IEEE Congr Evol Comput, pp 1663–1670 Yang ZY, Tang K, Yao X (2008a) Multilevel cooperative coevolution for large-scale optimization. Proc IEEE Congr Evol Comput, pp 1663–1670
go back to reference Yang ZY, Tang K, Yao X (2008b) Large-scale evolutionary optimization using cooperative coevolution. Inform Sci 178(3):2985–2999 Yang ZY, Tang K, Yao X (2008b) Large-scale evolutionary optimization using cooperative coevolution. Inform Sci 178(3):2985–2999
go back to reference Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102CrossRef Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102CrossRef
go back to reference Zhang JQ, Sanderson AC (2009) JADE: Adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958CrossRef Zhang JQ, Sanderson AC (2009) JADE: Adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958CrossRef
go back to reference Zhang ZH et al (2011) Orthogonal learning particle swarm optimization. IEEE Trans Evol Comput 15(6):832–847CrossRef Zhang ZH et al (2011) Orthogonal learning particle swarm optimization. IEEE Trans Evol Comput 15(6):832–847CrossRef
Metadata
Title
Adaptive multi-context cooperatively coevolving particle swarm optimization for large-scale problems
Authors
Ruo-Li Tang
Zhou Wu
Yan-Jun Fang
Publication date
23-02-2016
Publisher
Springer Berlin Heidelberg
Published in
Soft Computing / Issue 16/2017
Print ISSN: 1432-7643
Electronic ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-016-2081-6

Other articles of this Issue 16/2017

Soft Computing 16/2017 Go to the issue

Premium Partner