Skip to main content
Top

2016 | OriginalPaper | Chapter

12. Adaptive Poisson Regression Modeling of Univariate Count Outcomes

Authors : George J. Knafl, Kai Ding

Published in: Adaptive Regression for Modeling Nonlinear Relationships

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents adaptive analyses of data on the incidence of non-melanoma skin cancer for women in St. Paul, Minnesota and Fort Worth, Texas, addressing how skin cancer rates for women of varying ages in these two locations depend on age and location. These analyses demonstrate adaptive Poisson regression modeling of univariate count outcomes using fractional polynomials, including modeling means of univariate count outcomes, possibly adjusted to rate outcomes through offsets, and modeling their dispersions as well as means. Formulations are also provided for these alternative regression models, for associated k-fold LCV scores for unit dispersions models, extended quasi-likelihood cross-validation (QLCV+) scores for non-unit dispersions models based on extended quasi-likelihoods, and for residuals and standardized or Pearson residuals. The example analyses demonstrate assessing whether the log of the means of an outcome is nonlinear in individual predictors, whether those relationships are better addressed with multiple predictors in combination compared to using singleton predictors, whether those relationships are additive in predictors, whether the predictors interact using geometric combinations, and whether there is a benefit to considering constant dispersions compared to unit dispersions and non-constant dispersions compared to constant dispersions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference McCullagh, P., & Nelder, J. A. (1999). Generalized linear models (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC. McCullagh, P., & Nelder, J. A. (1999). Generalized linear models (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC.
go back to reference Stokes, M. E., Davis, C. S., & Koch, G. G. (2012). Categorical data analysis using the SAS system (3rd ed.). Cary, NC: SAS Institute. Stokes, M. E., Davis, C. S., & Koch, G. G. (2012). Categorical data analysis using the SAS system (3rd ed.). Cary, NC: SAS Institute.
go back to reference Zelterman, D. (2002). Advanced log-linear models using SAS. Cary, NC: SAS Institute. Zelterman, D. (2002). Advanced log-linear models using SAS. Cary, NC: SAS Institute.
Metadata
Title
Adaptive Poisson Regression Modeling of Univariate Count Outcomes
Authors
George J. Knafl
Kai Ding
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-33946-7_12

Premium Partner