Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

30-11-2019 | Original Article | Issue 6/2020

International Journal of Machine Learning and Cybernetics 6/2020

Adaptive random-based self-organizing background subtraction for moving detection

Journal:
International Journal of Machine Learning and Cybernetics > Issue 6/2020
Authors:
Shan Lu, Xianmin Ma
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The adaptability plays a significant role in moving detection. The diverse scenarios in real world still challenge this problem. Therefore, in this paper, we proposed an adaptive moving detection method, namely Adaptive Random-based Self-Organizing back- ground subtraction (ABSOBS) method. This method can adaptively extract the moving objects in various conditions and eliminate the “ghost” pixels simultaneously. Therefore, a robust initialization strategy is proposed to remove the noise pixels caused by the initialized frames. The proposed method uses a random- based scheme which allows the foreground pixels to up- date the neural network with a small probability. This strategy allows our algorithm to efficiently handle scene changes. Moreover, a foreground filter based on random rule is designed to eliminate the “ghost” pixel. More importantly, ABSOBS adopts a regulator to control the updating rate in different conditions. It makes our method easy-to-used and need not to set the parameters manually. The experiment results on various scenarios show that our method improves the detection accuracy for the SOBS and outperforms other state-of- the-art methods.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2020

International Journal of Machine Learning and Cybernetics 6/2020 Go to the issue