Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

29-04-2020 | Original Paper | Issue 1/2021

Numerical Algorithms 1/2021

Adaptive total variation and second-order total variation-based model for low-rank tensor completion

Journal:
Numerical Algorithms > Issue 1/2021
Authors:
Xin Li, Ting-Zhu Huang, Xi-Le Zhao, Teng-Yu Ji, Yu-Bang Zheng, Liang-Jian Deng
Important notes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Recently, low-rank regularization has achieved great success in tensor completion. However, only considering the global low-rankness is not sufficient, especially for a low sampling rate (SR). Total variation (TV) is introduced into low-rank tensor completion (LRTC) problem to promote the local smoothness by incorporating the first-order derivatives information. However, TV usually leads to undesirable staircase effects. To alleviate these staircase effects, we suggest a first- and second-order TV-based parallel matrix factorization model for LRTC problem, which integrates the local smoothness and global low-rankness by simultaneously exploiting the first- and second-order derivatives information. To solve the proposed model, an efficient proximal alternating optimization (PAO)-based algorithm is developed with theoretical guarantee. Moreover, we suggest a regularization parameter selection strategy to automatically update two regularization parameters, which is able to take advantage of the best properties of each of the two regularization terms. Extensive experiments on different tensor data show the superiority of the proposed method over other methods, particularly for extremely low SRs.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 1/2021

Numerical Algorithms 1/2021 Go to the issue

Premium Partner

    Image Credits