Skip to main content
Top

2019 | OriginalPaper | Chapter

3. Additional Sensors for Combustion Analysis

Author : Rakesh Kumar Maurya

Published in: Reciprocating Engine Combustion Diagnostics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In addition to in-cylinder pressure sensor, the other sensors are typically required for analyzing the processes involved during engine combustion cycle. For engine combustion diagnostics, the measurement of dynamic signals from engine subsystems (whose activity directly relates to the combustion and in-cylinder processes) is required. These subsystems also need high-speed, crank angle-based measurements to analyze their operation and effectiveness because it directly influences the engine combustion process. The most commonly measured signals for combustion analysis are low-pressure signals from intake and exhaust manifold, injection-related signals (injector needle lift, dynamic fuel pressure), temperature, mass flow, ignition-related signals (ignition timing signal, ion current signal), valve motion events, and oxygen signal for air-fuel ratio control. The present chapter deals with these additional sensors required for the combustion analysis and describes their function, mounting, and signal generation. Intake and exhaust pressure sensors are particularly important for measuring the gas exchange or low-pressure phase of the engine combustion cycle. These measurements are used in conjunction with valve lift and high-pressure cylinder measurement to derive accurate heat release calculations. Needle lift and line pressures establish the fuel injection rate and the dynamic behavior of fuel in the high-pressure fuel system at different engine operating conditions. A common requirement is to measure and evaluate the behavior of gas flow into the engine cylinder for detailed combustion analysis. Additionally, these measurements can provide data for engine simulation models that calculate cylinder residual charge and trapping efficiencies. Ignition signals are measured to relate the ignition and combustion events in spark ignition engines. The timing of the ignition of the fuel-air mixture is critical to achieve the efficient engine operation. Air-fuel ratio control is required to maintain the stoichiometric air-fuel ratio in conventional spark ignition engines. Chemical sensors are used for oxygen detection and air-fuel ratio control. Thus, the chapter describes these additional sensors required for engine combustion diagnosis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Czerwinski, J., Comte, P., Hilfiker, T., & Fürholz, A. (2012). Research of techniques for low pressure indication in internal combustion engines (No. 2012-01-0444). SAE Technical Paper. Czerwinski, J., Comte, P., Hilfiker, T., & Fürholz, A. (2012). Research of techniques for low pressure indication in internal combustion engines (No. 2012-01-0444). SAE Technical Paper.
2.
go back to reference Rogers, D. R. (2010). Engine combustion: Pressure measurement and analysis. Warrendale, PA: Society of Automotive Engineers.CrossRef Rogers, D. R. (2010). Engine combustion: Pressure measurement and analysis. Warrendale, PA: Society of Automotive Engineers.CrossRef
3.
go back to reference Gossweiler, C., Sailer, W., & Cater, C. (2006). Sensors and amplifiers for combustion analysis, A guide for the User 100-403e-10.06, © Kistler Instrumente AG, CH-8408 Winterthur, Okt. 2006. Gossweiler, C., Sailer, W., & Cater, C. (2006). Sensors and amplifiers for combustion analysis, A guide for the User 100-403e-10.06, © Kistler Instrumente AG, CH-8408 Winterthur, Okt. 2006.
4.
go back to reference Van Basshuysen, R., & Schäfer, F. (2016). Internal combustion engine handbook-basics, components, systems and perspectives (2nd ed.). Warrendale, PA: SAE International. Van Basshuysen, R., & Schäfer, F. (2016). Internal combustion engine handbook-basics, components, systems and perspectives (2nd ed.). Warrendale, PA: SAE International.
5.
go back to reference Ueno, M., Izumi, T., Watanabe, Y., & Baba, H. (2008). Exhaust gas pressure sensor (No. 2008-01-0907). SAE Technical Paper. Ueno, M., Izumi, T., Watanabe, Y., & Baba, H. (2008). Exhaust gas pressure sensor (No. 2008-01-0907). SAE Technical Paper.
6.
go back to reference Leach, F. C., Davy, M. H., Siskin, D., Pechstedt, R., & Richardson, D. (2017). An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed. Review of Scientific Instruments, 88(12), 125004.CrossRef Leach, F. C., Davy, M. H., Siskin, D., Pechstedt, R., & Richardson, D. (2017). An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed. Review of Scientific Instruments, 88(12), 125004.CrossRef
7.
go back to reference Vítek, O., & Polášek, M. (2002). Tuned manifold systems-application of 1-D pipe model (No. 2002-01-0004). SAE Technical Paper. Vítek, O., & Polášek, M. (2002). Tuned manifold systems-application of 1-D pipe model (No. 2002-01-0004). SAE Technical Paper.
8.
go back to reference Maurya, R. K. (2018). Characteristics and control of low temperature combustion engines: Employing gasoline, ethanol and methanol. Cham: Springer.CrossRef Maurya, R. K. (2018). Characteristics and control of low temperature combustion engines: Employing gasoline, ethanol and methanol. Cham: Springer.CrossRef
9.
go back to reference Ladommatos, N., & Zhao, H. (2001). Engine combustion instrumentation and diagnostics. Warrendale, PA: SAE International. Ladommatos, N., & Zhao, H. (2001). Engine combustion instrumentation and diagnostics. Warrendale, PA: SAE International.
10.
go back to reference Dhar, A. (2013). Combustion, performance, emissions, durability and lubricating oil tribology investigations of biodiesel (karanja) fuelled compression ignition engine (PhD thesis). IIT Kanpur. Dhar, A. (2013). Combustion, performance, emissions, durability and lubricating oil tribology investigations of biodiesel (karanja) fuelled compression ignition engine (PhD thesis). IIT Kanpur.
11.
go back to reference Krogerus, T., Hyvönen, M., & Huhtala, K. (2018). Analysis of common rail pressure signal of dual-fuel large industrial engine for identification of injection duration of pilot diesfel injectors. Fuel, 216, 1–9.CrossRef Krogerus, T., Hyvönen, M., & Huhtala, K. (2018). Analysis of common rail pressure signal of dual-fuel large industrial engine for identification of injection duration of pilot diesfel injectors. Fuel, 216, 1–9.CrossRef
12.
go back to reference Payri, R., Gimeno, J., Viera, J. P., & Plazas, A. H. (2013). Needle lift profile influence on the vapor phase penetration for a prototype diesel direct acting piezoelectric injector. Fuel, 113, 257–265.CrossRef Payri, R., Gimeno, J., Viera, J. P., & Plazas, A. H. (2013). Needle lift profile influence on the vapor phase penetration for a prototype diesel direct acting piezoelectric injector. Fuel, 113, 257–265.CrossRef
13.
go back to reference Margot, X., Hoyas, S., Fajardo, P., & Patouna, S. (2011). CFD study of needle motion influence on the exit flow conditions of single-hole injectors. Atomization and Sprays, 21(1), 31–40.CrossRef Margot, X., Hoyas, S., Fajardo, P., & Patouna, S. (2011). CFD study of needle motion influence on the exit flow conditions of single-hole injectors. Atomization and Sprays, 21(1), 31–40.CrossRef
14.
go back to reference Wang, T. C., Han, J. S., Xie, X. B., Lai, M. C., Henein, N. A., Schwarz, E., & Bryzik, W. (2003). Parametric characterization of high-pressure diesel fuel injection systems. Journal of Engineering for Gas Turbines and Power, 125(2), 412–426.CrossRef Wang, T. C., Han, J. S., Xie, X. B., Lai, M. C., Henein, N. A., Schwarz, E., & Bryzik, W. (2003). Parametric characterization of high-pressure diesel fuel injection systems. Journal of Engineering for Gas Turbines and Power, 125(2), 412–426.CrossRef
15.
go back to reference Huang, W., Moon, S., & Ohsawa, K. (2016). Near-nozzle dynamics of diesel spray under varied needle lifts and its prediction using analytical model. Fuel, 180, 292–300.CrossRef Huang, W., Moon, S., & Ohsawa, K. (2016). Near-nozzle dynamics of diesel spray under varied needle lifts and its prediction using analytical model. Fuel, 180, 292–300.CrossRef
16.
go back to reference Payri, R., Gimeno, J., Venegas, O., & Plazas, A. H. (2011). Effect of partial needle lift on the nozzle flow in diesel fuel injectors (No. 2011-01-1827). SAE Technical Paper. Payri, R., Gimeno, J., Venegas, O., & Plazas, A. H. (2011). Effect of partial needle lift on the nozzle flow in diesel fuel injectors (No. 2011-01-1827). SAE Technical Paper.
17.
go back to reference Coppo, M., Dongiovanni, C., & Negri, C. (2004). Numerical analysis and experimental investigation of a common rail type diesel injector. Journal of Engineering for Gas Turbines and Power, 126, 874–885.CrossRef Coppo, M., Dongiovanni, C., & Negri, C. (2004). Numerical analysis and experimental investigation of a common rail type diesel injector. Journal of Engineering for Gas Turbines and Power, 126, 874–885.CrossRef
18.
go back to reference Coppo, M., Dongiovanni, C., & Negri, C. (2007). A linear optical sensor for measuring needle displacement in common-rail diesel injectors. Sensors and Actuators A: Physical, 134(2), 366–373.CrossRef Coppo, M., Dongiovanni, C., & Negri, C. (2007). A linear optical sensor for measuring needle displacement in common-rail diesel injectors. Sensors and Actuators A: Physical, 134(2), 366–373.CrossRef
19.
go back to reference Amirante, R., Catalano, L. A., & Coratella, C. (2013). A new optical sensor for the measurement of the displacement of the needle in a common rail injector (No. 2013-24-0146). SAE Technical Paper. Amirante, R., Catalano, L. A., & Coratella, C. (2013). A new optical sensor for the measurement of the displacement of the needle in a common rail injector (No. 2013-24-0146). SAE Technical Paper.
20.
go back to reference Kastner, L. J. (1947). An investigation of the airbox method of measuring the air consumption of internal combustion engines. Proceedings of the Institution of Mechanical Engineers, 157(1), 387–404.CrossRef Kastner, L. J. (1947). An investigation of the airbox method of measuring the air consumption of internal combustion engines. Proceedings of the Institution of Mechanical Engineers, 157(1), 387–404.CrossRef
21.
go back to reference Stone, R. (1992). Introduction to internal combustion engines (2nd ed.). London: MacMillan.CrossRef Stone, R. (1992). Introduction to internal combustion engines (2nd ed.). London: MacMillan.CrossRef
22.
go back to reference Martyr, A. J., & Plint, M. A. (2007). Engine testing (3rd ed.). Oxford: Butterworth-Heinemann (Elsevier). Martyr, A. J., & Plint, M. A. (2007). Engine testing (3rd ed.). Oxford: Butterworth-Heinemann (Elsevier).
23.
go back to reference Turner, J. (2009). Temperature sensors. In J. Turner (Ed.), Automotive sensors (pp. 85–105). New Jersy: Momentum Press. Turner, J. (2009). Temperature sensors. In J. Turner (Ed.), Automotive sensors (pp. 85–105). New Jersy: Momentum Press.
24.
go back to reference Reif, K. (2015). Gasoline engine management. Friedrichshafen: Springer Vieweg.CrossRef Reif, K. (2015). Gasoline engine management. Friedrichshafen: Springer Vieweg.CrossRef
25.
go back to reference Kerres, R., Schwarz, D., Bach, M., Fuoss, K., Eichenberg, A., & Wüst, J. (2012). Overview of measurement technology for valve lift and rotation on motored and fired engines. SAE International Journal of Engines, 5(2), 197–206.CrossRef Kerres, R., Schwarz, D., Bach, M., Fuoss, K., Eichenberg, A., & Wüst, J. (2012). Overview of measurement technology for valve lift and rotation on motored and fired engines. SAE International Journal of Engines, 5(2), 197–206.CrossRef
26.
go back to reference Çinar, C., Şahin, F., Can, Ö., & Uyumaz, A. (2016). A comparison of performance and exhaust emissions with different valve lift profiles between gasoline and LPG fuels in a SI engine. Applied Thermal Engineering, 107, 1261–1268.CrossRef Çinar, C., Şahin, F., Can, Ö., & Uyumaz, A. (2016). A comparison of performance and exhaust emissions with different valve lift profiles between gasoline and LPG fuels in a SI engine. Applied Thermal Engineering, 107, 1261–1268.CrossRef
27.
go back to reference Aggarwal, S., Subbu, R., & Gilotra, S. (2015). A new approach in measurement of ignition timing directly on a two-wheeler using embedded system (No. 2015-01-1642). SAE Technical Paper. Aggarwal, S., Subbu, R., & Gilotra, S. (2015). A new approach in measurement of ignition timing directly on a two-wheeler using embedded system (No. 2015-01-1642). SAE Technical Paper.
28.
go back to reference Swingler, J. (2009). Gas composition sensors. In J. Turner (Ed.), Automotive sensors (pp. 231–257). New Jersey: Momentum Press. Swingler, J. (2009). Gas composition sensors. In J. Turner (Ed.), Automotive sensors (pp. 231–257). New Jersey: Momentum Press.
29.
go back to reference Benvenuti, L., Di Benedetto, M. D., Di Gennaro, S., & Sangiovanni-Vincentelli, A. (2003). Individual cylinder characteristic estimation for a spark injection engine. Automatica, 39(7), 1157–1169.MathSciNetCrossRef Benvenuti, L., Di Benedetto, M. D., Di Gennaro, S., & Sangiovanni-Vincentelli, A. (2003). Individual cylinder characteristic estimation for a spark injection engine. Automatica, 39(7), 1157–1169.MathSciNetCrossRef
30.
go back to reference Cavina, N., Corti, E., & Moro, D. (2010). Closed-loop individual cylinder air–fuel ratio control via UEGO signal spectral analysis. Control Engineering Practice, 18(11), 1295–1306.CrossRef Cavina, N., Corti, E., & Moro, D. (2010). Closed-loop individual cylinder air–fuel ratio control via UEGO signal spectral analysis. Control Engineering Practice, 18(11), 1295–1306.CrossRef
Metadata
Title
Additional Sensors for Combustion Analysis
Author
Rakesh Kumar Maurya
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-11954-6_3

Premium Partner