Skip to main content
Top
Published in:

2024 | OriginalPaper | Chapter

Additive Combinatorics in Groups and Geometric Combinatorics on Spheres

Author : Béla Bajnok

Published in: Combinatorics, Graph Theory and Computing

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We embark on a tour that takes us through four closely related topics: the dual concepts of independence and spanning in finite abelian groups and the analogous dual concepts of designs and distance sets on spheres. We review some of the main known results in each area, mention several open questions, and discuss some connections among these four interesting topics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference B. Bajnok, The spanning number and the independence number of a subset of an abelian group. In Number theory (New York, 2003), Springer, New York, 2004, 1–16. B. Bajnok, The spanning number and the independence number of a subset of an abelian group. In Number theory (New York, 2003), Springer, New York, 2004, 1–16.
4.
go back to reference B. Bajnok, Additive Combinatorics: A Menu of Research Problems. CRC Press, Boca Raton, 2018, xix+390 pp. B. Bajnok, Additive Combinatorics: A Menu of Research Problems. CRC Press, Boca Raton, 2018, xix+390 pp.
5.
go back to reference B. Bajnok and I. Ruzsa, The independence number of a subset of an abelian group. Integers, 3 (2003), Paper A2. B. Bajnok and I. Ruzsa, The independence number of a subset of an abelian group. Integers, 3 (2003), Paper A2.
6.
go back to reference E. Bannai, On extremal finite sets in the sphere and other metric spaces. London Math. Soc. Lecture Note Ser., 131 (1988), 13–38.MathSciNet E. Bannai, On extremal finite sets in the sphere and other metric spaces. London Math. Soc. Lecture Note Ser., 131 (1988), 13–38.MathSciNet
9.
go back to reference S. Boumova, P. Boyvalenkov, and D. Danev, New nonexistence results for spherical designs. In B. Bojanov, editor, Constructive Theory of Functions, Varna, 2002, 225–232. S. Boumova, P. Boyvalenkov, and D. Danev, New nonexistence results for spherical designs. In B. Bojanov, editor, Constructive Theory of Functions, Varna, 2002, 225–232.
10.
go back to reference P. Boyvalenkov and M. Stoyanova, New nonexistence results for spherical designs. Adv. Math. Commun.7 (2013), no. 3, 279–292.MathSciNetCrossRef P. Boyvalenkov and M. Stoyanova, New nonexistence results for spherical designs. Adv. Math. Commun.7 (2013), no. 3, 279–292.MathSciNetCrossRef
11.
12.
go back to reference C. D. Godsil, Algebraic Combinatorics. Chapman and Hall, New York, 1993, xvi+362 pp. C. D. Godsil, Algebraic Combinatorics. Chapman and Hall, New York, 1993, xvi+362 pp.
14.
go back to reference R. H. Hardin and N. J. A. Sloane, McLaren’s improved snub cube and other new spherical designs in three dimensions. Discrete Comput. Geom., 15 (1996), 429–441.MathSciNetCrossRef R. H. Hardin and N. J. A. Sloane, McLaren’s improved snub cube and other new spherical designs in three dimensions. Discrete Comput. Geom., 15 (1996), 429–441.MathSciNetCrossRef
15.
go back to reference S. G. Hoggar, Spherical t-designs. In C. J. Colbourn and J. H. Dinitz, editors, The CRC handbook of combinatorial designs, CRC Press, Boca Raton, 1996, 462–466. S. G. Hoggar, Spherical t-designs. In C. J. Colbourn and J. H. Dinitz, editors, The CRC handbook of combinatorial designs, CRC Press, Boca Raton, 1996, 462–466.
17.
go back to reference M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets. Springer-Verlag, New York, 1996, xiv+293 pp. M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets. Springer-Verlag, New York, 1996, xiv+293 pp.
19.
go back to reference B. Reznick, Sums of even powers of real linear forms. Mem. Amer. Math. Soc., 463, 1992. B. Reznick, Sums of even powers of real linear forms. Mem. Amer. Math. Soc., 463, 1992.
21.
go back to reference P. D. Seymour and T. Zaslavsky, Averaging sets: A generalization of mean values and spherical designs. Adv. Math., 52 (1984), 213–240.MathSciNetCrossRef P. D. Seymour and T. Zaslavsky, Averaging sets: A generalization of mean values and spherical designs. Adv. Math., 52 (1984), 213–240.MathSciNetCrossRef
Metadata
Title
Additive Combinatorics in Groups and Geometric Combinatorics on Spheres
Author
Béla Bajnok
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-62166-6_1

Premium Partner