Skip to main content
Top
Published in:

21-07-2023

Additive Manufacturing of Titanium Aluminide Alloy Ti–Al–V–Nb–Cr–Gd by Selective Electron Beam Melting

Authors: P. V. Panin, E. A. Lukina, I. A. Bogachev, P. N. Medvedev, S. A. Naprienko

Published in: Metallurgist | Issue 3-4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We have studied the technological properties, chemical composition, and structure of a metal powder composition (MPC, 40–100 μm) made from a new six-component intermetallic β-solidifying TiAl-alloy Ti–44.5Al–2V–1Nb–2Cr–0.1Gd, at. % (Ti–31.0Al–2.5V–2.5Nb–2.5Cr–0.4Gd, wt.%) by crucibleless induction melting inert gas atomization and intended for additive manufacturing of dense parts by selective electron beam melting (SEBM). It is shown that the main elements of the composition of the MPC are the same as in the electrode, and the phase composition of the MPC corresponds to a rapidly solidified metastable state (γ + α + β). High flowability and sphericity of the MPC were achieved. The Al content in the starting electrode reduces by 1.1–1.3 at.% (1.0–1.2 wt.%) after SEBM due to evaporation. The microstructure of the as-SEBM-built testpieces exhibited intragranular lamellar (γ + α2)-colonies and some γ- and β0/B2-phases at grain boundaries. It was found out that the cross-sectional distribution of Ti and Al along the building direction (Z) is nonuniform, resulting in nonuniform distribution of phases and grain sizes. No areas with duplex or coarse-grained γ-phase, which are characteristic for the 2nd-generation electron beam melted TiAl-alloy Ti-4822, were identified.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. A. Nochovnaya, O. A. Bazyleva, D. E. Kablov, and P. V. Panin, Intermetallic Titanium-Based Alloys and Nickel [in Russian], VIAM, Moscow (2019); ISBN: 978-5-905217-46-3. N. A. Nochovnaya, O. A. Bazyleva, D. E. Kablov, and P. V. Panin, Intermetallic Titanium-Based Alloys and Nickel [in Russian], VIAM, Moscow (2019); ISBN: 978-5-905217-46-3.
2.
3.
go back to reference I. Gibson, D. W. Rosen, and B. Stucker, Additive Manufacturing Technology, Springer Science and Business Media, LLC, New York (2010). I. Gibson, D. W. Rosen, and B. Stucker, Additive Manufacturing Technology, Springer Science and Business Media, LLC, New York (2010).
4.
go back to reference L. E. Murr, S. M. Gaytan, D. A. Ramirez, et al., “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” J. Mater. Sci. Tech., 28, 1–14 (2012).CrossRef L. E. Murr, S. M. Gaytan, D. A. Ramirez, et al., “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” J. Mater. Sci. Tech., 28, 1–14 (2012).CrossRef
5.
go back to reference H. Attar, S. Ehtemam-Haghighi, D. Kent, X. Wu, and M. S. Dargusch, “Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes,” Mater. Sci. Eng., A, 705, 385–393 (2017).CrossRef H. Attar, S. Ehtemam-Haghighi, D. Kent, X. Wu, and M. S. Dargusch, “Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes,” Mater. Sci. Eng., A, 705, 385–393 (2017).CrossRef
6.
go back to reference S. L. Lu, M. Qian, H. P. Tang, M. Yan, J. Wang, and D. H. St-John, “Massive transformation in Ti–6Al–4V additively manufactured by selective electron beam melting,” Acta Mater., 104, 303–311 (2016).CrossRef S. L. Lu, M. Qian, H. P. Tang, M. Yan, J. Wang, and D. H. St-John, “Massive transformation in Ti–6Al–4V additively manufactured by selective electron beam melting,” Acta Mater., 104, 303–311 (2016).CrossRef
7.
go back to reference H. P. Qu and H. M. Wang, “Microstructure and mechanical properties of laser melting deposited γ-TiAl intermetallic alloys,” Mater. Sci. Eng., A, 466, 187–194 (2007).CrossRef H. P. Qu and H. M. Wang, “Microstructure and mechanical properties of laser melting deposited γ-TiAl intermetallic alloys,” Mater. Sci. Eng., A, 466, 187–194 (2007).CrossRef
8.
go back to reference M. Thomas, T. Malot, and P. Aubry, “Laser metal deposition of the intermetallic TiAl alloy,” Met. Trans., A, 48, 3143–3158 (2017).CrossRef M. Thomas, T. Malot, and P. Aubry, “Laser metal deposition of the intermetallic TiAl alloy,” Met. Trans., A, 48, 3143–3158 (2017).CrossRef
9.
go back to reference M. Thomas, T. Malot, P. Aubry, C. Colin, T. Vilaro, and P. Bertrand, “The prospects for additive manufacturing of TiAl alloy,” Mater. High Temp., 33, 571–577 (2016).CrossRef M. Thomas, T. Malot, P. Aubry, C. Colin, T. Vilaro, and P. Bertrand, “The prospects for additive manufacturing of TiAl alloy,” Mater. High Temp., 33, 571–577 (2016).CrossRef
10.
go back to reference J. Gussone, G. Garces, J. Haubrich, et al., “Microstructure stability of γ-TiAl produced by selective laser melting,” Scripta Mater., 130, 110–113 (2017).CrossRef J. Gussone, G. Garces, J. Haubrich, et al., “Microstructure stability of γ-TiAl produced by selective laser melting,” Scripta Mater., 130, 110–113 (2017).CrossRef
11.
go back to reference J. Schwerdtfeger and C. Korner, “Selective electron beam melting of Ti–48Al–2Nb–2Cr: microstructure and aluminium loss,” Intermetallics, 49, 29–35 (2014).CrossRef J. Schwerdtfeger and C. Korner, “Selective electron beam melting of Ti–48Al–2Nb–2Cr: microstructure and aluminium loss,” Intermetallics, 49, 29–35 (2014).CrossRef
12.
go back to reference S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, and P. Fino, “Electron beam melting of Ti–48Al–2Cr–2Nb alloy: microstructure and mechanical properties investigation,” Intermetallics, 19, 776–782 (2011).CrossRef S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, and P. Fino, “Electron beam melting of Ti–48Al–2Cr–2Nb alloy: microstructure and mechanical properties investigation,” Intermetallics, 19, 776–782 (2011).CrossRef
13.
go back to reference W. Chen, Y. Yang, L. L. Liu, Z. Y. Chen, and D. Liu, “Microstructure control and tensile properties of EBM γ-TiAl,” Aeronaut. Manuf. Technol., 1–2, 37–41 (2017). W. Chen, Y. Yang, L. L. Liu, Z. Y. Chen, and D. Liu, “Microstructure control and tensile properties of EBM γ-TiAl,” Aeronaut. Manuf. Technol., 1–2, 37–41 (2017).
14.
go back to reference A. Mohammad, A. M. Alahmari, M. K. Mohammed, R. K. Renganayagalu, and K. Moiduddin, “Effect of energy input on microstructure and mechanical properties of titanium aluminide alloy fabricated by the additive manufacturing process of electron beam melting,” Materials, No. 10 (211), 1–16 (2017). A. Mohammad, A. M. Alahmari, M. K. Mohammed, R. K. Renganayagalu, and K. Moiduddin, “Effect of energy input on microstructure and mechanical properties of titanium aluminide alloy fabricated by the additive manufacturing process of electron beam melting,” Materials, No. 10 (211), 1–16 (2017).
15.
go back to reference M. Todai, T. Nakano, T. Q. Liu, et al., “Effect of building direction on the microstructure and tensile properties of Ti–48Al–2Cr–2Nb alloy additively manufactured by electron beam melting,” Add. Manuf., 13, 61–70 (2017). M. Todai, T. Nakano, T. Q. Liu, et al., “Effect of building direction on the microstructure and tensile properties of Ti–48Al–2Cr–2Nb alloy additively manufactured by electron beam melting,” Add. Manuf., 13, 61–70 (2017).
16.
go back to reference M. Terner, S. Biamino, P. Epicoco, et al., “Electron-beam melting of high niobium containing TiAl alloy: feasibility investigation,” Steel Res. Int., 83, 943–949 (2012).CrossRef M. Terner, S. Biamino, P. Epicoco, et al., “Electron-beam melting of high niobium containing TiAl alloy: feasibility investigation,” Steel Res. Int., 83, 943–949 (2012).CrossRef
17.
go back to reference R. Wartbichler, H. Clemens, S. Mayer, et al., “On the formation mechanism of banded microstructures in electron beam melted Ti–48Al–2Cr–2Nb and the design of heat treatments as remedial action,” Adv. Eng. Mat., 23, No. 12, Art. 2101199 (2021). R. Wartbichler, H. Clemens, S. Mayer, et al., “On the formation mechanism of banded microstructures in electron beam melted Ti–48Al–2Cr–2Nb and the design of heat treatments as remedial action,” Adv. Eng. Mat., 23, No. 12, Art. 2101199 (2021).
18.
go back to reference M. Seifi, A. A. Salem, D. P. Satko, U. Ackelid, S. L. Semiatin, and J. J. Lewandowski, “Effects of HIP on microstructural heterogeneity, defect distribution and mechanical properties of additively manufactured EBM Ti–48Al–2Cr–2Nb,” J. Alloys Comp., 729, 1118–1135 (2017).CrossRef M. Seifi, A. A. Salem, D. P. Satko, U. Ackelid, S. L. Semiatin, and J. J. Lewandowski, “Effects of HIP on microstructural heterogeneity, defect distribution and mechanical properties of additively manufactured EBM Ti–48Al–2Cr–2Nb,” J. Alloys Comp., 729, 1118–1135 (2017).CrossRef
19.
go back to reference G. Baudana, S. Biamino, B. Kloden, et al., “Electron beam melting of Ti–48Al–2Nb–0.7Cr–0.3Si: feasibility investigation,” Intermetallics, 73, 43–49 (2016).CrossRef G. Baudana, S. Biamino, B. Kloden, et al., “Electron beam melting of Ti–48Al–2Nb–0.7Cr–0.3Si: feasibility investigation,” Intermetallics, 73, 43–49 (2016).CrossRef
20.
go back to reference V. Juechter, M. M. Franke, T. Merenda, A. Stich, C. Korner, and R. F. Singer, “Additive manufacturing of Ti–45Al–4Nb–C by selective electron beam melting for automotive applications,” Add. Manuf., 22, 118–126 (2018). V. Juechter, M. M. Franke, T. Merenda, A. Stich, C. Korner, and R. F. Singer, “Additive manufacturing of Ti–45Al–4Nb–C by selective electron beam melting for automotive applications,” Add. Manuf., 22, 118–126 (2018).
21.
go back to reference R. Wartbichler, H. Clemens, and S. Mayer, “Electron beam melting of a p-solidifying intermetallic titanium aluminide alloy,” Adv. Eng. Mater., 21, Art. 1900800 (2019). R. Wartbichler, H. Clemens, and S. Mayer, “Electron beam melting of a p-solidifying intermetallic titanium aluminide alloy,” Adv. Eng. Mater., 21, Art. 1900800 (2019).
22.
go back to reference M. Reith, M. Franke, M. Schloffer, and C. Korner, “Processing 4th generation titanium aluminides via electron beam based additive manufacturing - characterization of microstructure and mechanical properties,” Materialia, 14, Art. 100902 (2020). M. Reith, M. Franke, M. Schloffer, and C. Korner, “Processing 4th generation titanium aluminides via electron beam based additive manufacturing - characterization of microstructure and mechanical properties,” Materialia, 14, Art. 100902 (2020).
23.
go back to reference D. Wimler, J. Lindemann, M. Reith, A. Kirchner, M. Allen, W. G. Vargas, H. Clemens, and S. Mayer, “Designing advanced intermetallic titanium aluminide alloys for additive manufacturing,” Intermetallics, 131, Art. 107109 (2021). D. Wimler, J. Lindemann, M. Reith, A. Kirchner, M. Allen, W. G. Vargas, H. Clemens, and S. Mayer, “Designing advanced intermetallic titanium aluminide alloys for additive manufacturing,” Intermetallics, 131, Art. 107109 (2021).
24.
go back to reference S. Mayer, P. Erdely, F. D. Fischer, D. Holec, M. Kastenhuber, T. Klein, and H. Clemens, “Intermetallic β-solidifying γ-TiAl based alloys – from fundamental research to application,” Adv. Eng. Mater., 19, Art. 1600735 (2017). S. Mayer, P. Erdely, F. D. Fischer, D. Holec, M. Kastenhuber, T. Klein, and H. Clemens, “Intermetallic β-solidifying γ-TiAl based alloys – from fundamental research to application,” Adv. Eng. Mater., 19, Art. 1600735 (2017).
25.
go back to reference H. Clemens and S. Mayer, “Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys,” Adv. Eng. Mater., 15, 191–215 (2013).CrossRef H. Clemens and S. Mayer, “Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys,” Adv. Eng. Mater., 15, 191–215 (2013).CrossRef
26.
go back to reference E. N. Kablov, N. A. Nochovnaya, D. E. Kablov, V. V. Antipov, P. V. Panin, and A. S. Kochetkov, Alloy Based on Titanium Intermetallide and Its Product [in Russian], Patent No. 2606368 RF; Appl. Oct. 15, 2015; publ. Jan. 10, 2017; Byull. No. 1. E. N. Kablov, N. A. Nochovnaya, D. E. Kablov, V. V. Antipov, P. V. Panin, and A. S. Kochetkov, Alloy Based on Titanium Intermetallide and Its Product [in Russian], Patent No. 2606368 RF; Appl. Oct. 15, 2015; publ. Jan. 10, 2017; Byull. No. 1.
27.
32.
go back to reference S. Spitans, H. Franz, and E. Baake, “Numerical modelling and optimization of the electrode induction melting for inert gas atomization (EIGA),” in: Proc. 11th PAMIR Int. Conf. on Fundamental and Applied MHD (2019), pp. 327–331. S. Spitans, H. Franz, and E. Baake, “Numerical modelling and optimization of the electrode induction melting for inert gas atomization (EIGA),” in: Proc. 11th PAMIR Int. Conf. on Fundamental and Applied MHD (2019), pp. 327–331.
36.
38.
go back to reference N. A. Belov, V. D. Belov, and N. I. Dashkevich, Phase Composition of Gamma Alloys Based on Titanium Aluminides [in Russian], VIAM, Moscow (2018); ISBN: 978-5-905217-21-0. N. A. Belov, V. D. Belov, and N. I. Dashkevich, Phase Composition of Gamma Alloys Based on Titanium Aluminides [in Russian], VIAM, Moscow (2018); ISBN: 978-5-905217-21-0.
Metadata
Title
Additive Manufacturing of Titanium Aluminide Alloy Ti–Al–V–Nb–Cr–Gd by Selective Electron Beam Melting
Authors
P. V. Panin
E. A. Lukina
I. A. Bogachev
P. N. Medvedev
S. A. Naprienko
Publication date
21-07-2023
Publisher
Springer US
Published in
Metallurgist / Issue 3-4/2023
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-023-01519-y

Other articles of this Issue 3-4/2023

Metallurgist 3-4/2023 Go to the issue

Premium Partners