Skip to main content
Top

2024 | OriginalPaper | Chapter

Additivity of Multiplicative b-Generalized (Skew) Derivations

Authors : Sk Aziz, Om Prakash

Published in: Advances in Ring Theory and Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let R be a prime ring and Q be the right Martindale quotient ring of R. Then we prove that a map G on R satisfies \(G(xy)=G(x)y+ b\alpha (x)d(y)\) for all \(x,y\in R\) where \(\alpha \) is an automorphism on R and d is an additive map over R, \(b \in Q\), is additive. Moreover, if a map g on R satisfying \(g(xy)=g(x)y + bxd(y)\) for all \(x,y\in R\) and db are mentioned above, then g is additive.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aziz, S., Ghosh, A., Prakash, O.: Additivity of multiplicative (generalized) skew semi-derivations on rings. Georgian Math. J, Preprint (2023)CrossRef Aziz, S., Ghosh, A., Prakash, O.: Additivity of multiplicative (generalized) skew semi-derivations on rings. Georgian Math. J, Preprint (2023)CrossRef
4.
go back to reference Ghosh, A., Prakash, O.: New results on generalized \((m, n)\)-jordan derivations over semiprime rings. Southeast Asian Bull. Math. 43(3), 323–331 (2019)MathSciNet Ghosh, A., Prakash, O.: New results on generalized \((m, n)\)-jordan derivations over semiprime rings. Southeast Asian Bull. Math. 43(3), 323–331 (2019)MathSciNet
5.
go back to reference Ghosh, A., Prakash, O.: Jordan left \({g, h}\)-derivation over some algebras. Indian J. Pure Appl. Math. 51(4), 1433–1450 (2020)MathSciNetCrossRef Ghosh, A., Prakash, O.: Jordan left \({g, h}\)-derivation over some algebras. Indian J. Pure Appl. Math. 51(4), 1433–1450 (2020)MathSciNetCrossRef
7.
8.
go back to reference Ferreira, B.L.M.: Multiplicative maps on triangular n-matrix rings. Int. J. Math. Game Theory Algebr. 23(2), 1–14 (2014) Ferreira, B.L.M.: Multiplicative maps on triangular n-matrix rings. Int. J. Math. Game Theory Algebr. 23(2), 1–14 (2014)
9.
go back to reference Ferreira, B.L.M.: Jordan derivations on triangular matrix rings. Extracta Math. 30(2), 181–190 (2015)MathSciNet Ferreira, B.L.M.: Jordan derivations on triangular matrix rings. Extracta Math. 30(2), 181–190 (2015)MathSciNet
10.
12.
go back to reference Martindale, W.S., III.: When are multiplicative mappings additive? Proc. Amer. Math. Soc. 21(3), 695–698 (1969) Martindale, W.S., III.: When are multiplicative mappings additive? Proc. Amer. Math. Soc. 21(3), 695–698 (1969)
13.
14.
go back to reference Yadav, V.K., Sharma, R.K.: Additivity of multiplicative generalized Jordan derivations on rings. Palest. J. Math. 6(Special Issue-II), 253–258 (2017) Yadav, V.K., Sharma, R.K.: Additivity of multiplicative generalized Jordan derivations on rings. Palest. J. Math. 6(Special Issue-II), 253–258 (2017)
15.
go back to reference Košan, M.T., Lee, T.K.: \(b\)-generalized derivations of semiprime rings having nilpotent values. J. Aust. Math. Soc. 96(3), 326–337 (2014)MathSciNetCrossRef Košan, M.T., Lee, T.K.: \(b\)-generalized derivations of semiprime rings having nilpotent values. J. Aust. Math. Soc. 96(3), 326–337 (2014)MathSciNetCrossRef
16.
Metadata
Title
Additivity of Multiplicative b-Generalized (Skew) Derivations
Authors
Sk Aziz
Om Prakash
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50795-3_3

Premium Partner