Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Adsorptive Heat Transformation and Storage: Thermodynamic and Kinetic Aspects

Authors : Alessio Sapienza, Andrea Frazzica, Angelo Freni, Yuri Aristov

Published in: Dynamics of Adsorptive Systems for Heat Transformation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

At present, the majority of thermodynamic cycles of heat engines are high-temperature cycles that are realized by internal combustion engines, steam and gas turbines, etc. (Cengel, Boles in Thermodynamics: an engineering approach, 4th edn. McGray-Hill Inc., New York, 2002). Traditional heat engine cycles are mainly based on burning of organic fuel that may result in dramatic increase of CO2 emissions and global warming. The world community has realized the gravity of these problems and taken initiatives to alleviate or reverse this situation. Fulfilment of these initiatives requires, first of all, the replacement of fossil fuels with renewable energy sources (e.g. the sun, wind, ambient heat, natural water basins, soil, air). These new heat sources have significantly lower temperature potential than that achieved by burning of fossil fuels which opens a niche for applying adsorption technologies for heat transformation and storage (Pons et al in Int J Refrig 22:5–17, 1999).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yu.A Cengel, M.A. Boles, Thermodynamics: An Engineering Approach, 4th edn. (McGray-Hill Inc., New York, 2002) Yu.A Cengel, M.A. Boles, Thermodynamics: An Engineering Approach, 4th edn. (McGray-Hill Inc., New York, 2002)
2.
go back to reference M. Pons, F. Meunier, G. Cacciola, R. Critoph, M. Groll, L. Puigjaner, B. Spinner, F. Ziegler, Thermodynamic based comparison of sorption systems for cooling and heat pumping. Int. J. Refrig. 22, 5–17 (1999)CrossRef M. Pons, F. Meunier, G. Cacciola, R. Critoph, M. Groll, L. Puigjaner, B. Spinner, F. Ziegler, Thermodynamic based comparison of sorption systems for cooling and heat pumping. Int. J. Refrig. 22, 5–17 (1999)CrossRef
3.
go back to reference S. Carnot (1824) Reflections on the Motive Power of Fire, in ed. by E. Mendoza (Dover, New York, 1960) S. Carnot (1824) Reflections on the Motive Power of Fire, in ed. by E. Mendoza (Dover, New York, 1960)
4.
go back to reference T.X. Li, R.Z. Wang, H. Li, Progress in the development of solid e gas sorption refrigeration thermodynamic cycle driven by low-grade thermal energy. Prog. Energy Combust. Sci. 40(1), 1–58 (2013)MathSciNet T.X. Li, R.Z. Wang, H. Li, Progress in the development of solid e gas sorption refrigeration thermodynamic cycle driven by low-grade thermal energy. Prog. Energy Combust. Sci. 40(1), 1–58 (2013)MathSciNet
5.
go back to reference I. Chandra, V.S. Patwardhan, Theoretical studies on adsorption heat transformer using zeolite-water vapour pair. Heat Recover. Syst. CHP 10, 527–537 (1990)CrossRef I. Chandra, V.S. Patwardhan, Theoretical studies on adsorption heat transformer using zeolite-water vapour pair. Heat Recover. Syst. CHP 10, 527–537 (1990)CrossRef
6.
go back to reference Yu.I Aristov, Adsorptive transformation of ambient heat: a new cycle. Appl. Therm. Eng. 124, 521–524 (2017)CrossRef Yu.I Aristov, Adsorptive transformation of ambient heat: a new cycle. Appl. Therm. Eng. 124, 521–524 (2017)CrossRef
7.
go back to reference Yu.I Aristov, Adsorptive transformation and storage of renewable heat: review of current trends in adsorption dynamics. Renew. Energy 110, 105–114 (2017)CrossRef Yu.I Aristov, Adsorptive transformation and storage of renewable heat: review of current trends in adsorption dynamics. Renew. Energy 110, 105–114 (2017)CrossRef
8.
go back to reference B. Saha, A. Chakraborty, S. Koyama, K. Srinivasan, K. Ng, T. Kashiwagi, P. Dutta, Thermodynamic formalism of minimum heat source temperature for driving advanced adsorption cooling device. Appl. Phys. Lett. 91, 111902 (2007)CrossRef B. Saha, A. Chakraborty, S. Koyama, K. Srinivasan, K. Ng, T. Kashiwagi, P. Dutta, Thermodynamic formalism of minimum heat source temperature for driving advanced adsorption cooling device. Appl. Phys. Lett. 91, 111902 (2007)CrossRef
9.
go back to reference Yu.I Aristov, Concept of adsorbent optimal for adsorptive cooling/heating. Appl. Therm. Eng. 72, 166–175 (2014)CrossRef Yu.I Aristov, Concept of adsorbent optimal for adsorptive cooling/heating. Appl. Therm. Eng. 72, 166–175 (2014)CrossRef
10.
go back to reference A. Frazzica, A. Sapienza, A. Freni, Novel experimental methodology for the characterization of thermodynamic performance of advanced working pairs for adsorptive heat transformers. Appl. Therm. Eng. 40, 1–8 (2014) A. Frazzica, A. Sapienza, A. Freni, Novel experimental methodology for the characterization of thermodynamic performance of advanced working pairs for adsorptive heat transformers. Appl. Therm. Eng. 40, 1–8 (2014)
11.
go back to reference D.I. Tchernev, D.T. Emerson, High-efficiency regenerative zeolite heat pump. ASHRAE Trans. 14, 2024–2032 (1988) D.I. Tchernev, D.T. Emerson, High-efficiency regenerative zeolite heat pump. ASHRAE Trans. 14, 2024–2032 (1988)
12.
go back to reference S. Szarzynski, Y. Feng, M. Pons, Study of different internal vapour transports for adsorption cycles with heat regeneration. Int. J. Refrig. 20(6), 390–401 (1997)CrossRef S. Szarzynski, Y. Feng, M. Pons, Study of different internal vapour transports for adsorption cycles with heat regeneration. Int. J. Refrig. 20(6), 390–401 (1997)CrossRef
13.
go back to reference F. Meunier, Theoretical performances of solid adsorbent cascading cycles using the zeolite - water and active carbon-methanol pairs: four case studies. Heat Recov. Syst. CHP 6, 491–498 (1986)CrossRef F. Meunier, Theoretical performances of solid adsorbent cascading cycles using the zeolite - water and active carbon-methanol pairs: four case studies. Heat Recov. Syst. CHP 6, 491–498 (1986)CrossRef
14.
go back to reference S.V. Shelton, Solid adsorbent heat pump system. U.S. patent 4610148 (1986) S.V. Shelton, Solid adsorbent heat pump system. U.S. patent 4610148 (1986)
15.
go back to reference Yu.I Aristov, A. Sapienza, A. Freni, D.S. Ovoschnikov, G. Restuccia, Reallocation of adsorption and desorption times for optimizing the cooling cycle parameters. Int. J. Refrig. 35, 525–531 (2012)CrossRef Yu.I Aristov, A. Sapienza, A. Freni, D.S. Ovoschnikov, G. Restuccia, Reallocation of adsorption and desorption times for optimizing the cooling cycle parameters. Int. J. Refrig. 35, 525–531 (2012)CrossRef
16.
go back to reference I.I. El-Sharkawy, H. Abdel Meguid, B.B. Saha, Towards an optimum performance of adsorption chillers: reallocation of adsorption/desorption cycle times. Int. J. Heat Mass Transf. 63, 171–182 (2013)CrossRef I.I. El-Sharkawy, H. Abdel Meguid, B.B. Saha, Towards an optimum performance of adsorption chillers: reallocation of adsorption/desorption cycle times. Int. J. Heat Mass Transf. 63, 171–182 (2013)CrossRef
17.
go back to reference B. Zajaczkowski, Optimizing performance of a three-bed adsorption chiller using new cycle time allocation and mass recovery. Appl. Therm. Eng. 100, 744–752 (2016)CrossRef B. Zajaczkowski, Optimizing performance of a three-bed adsorption chiller using new cycle time allocation and mass recovery. Appl. Therm. Eng. 100, 744–752 (2016)CrossRef
18.
go back to reference D.M. Ruthven, S. Farooq, K.S. Knaebel, Pressure Swing Adsorption, Willey (1994), 376p D.M. Ruthven, S. Farooq, K.S. Knaebel, Pressure Swing Adsorption, Willey (1994), 376p
19.
go back to reference A. Frazzica, B. Dawoud, R.E. Critoph, Theoretical analysis of several working pairs for adsorption heat transformer application, in Proceeding of HPC Conference, Nottingham (2016) A. Frazzica, B. Dawoud, R.E. Critoph, Theoretical analysis of several working pairs for adsorption heat transformer application, in Proceeding of HPC Conference, Nottingham (2016)
20.
go back to reference Angelo Freni, Gaetano Maggio, Alessio Sapienza, Andrea Frazzica, Giovanni Restuccia, Salvatore Vasta, Comparative analysis of promising adsorbent/adsorbate pairs for adsorptive heat pumping, air conditioning and refrigeration. Appl. Therm. Eng. 104, 85–95 (2016)CrossRef Angelo Freni, Gaetano Maggio, Alessio Sapienza, Andrea Frazzica, Giovanni Restuccia, Salvatore Vasta, Comparative analysis of promising adsorbent/adsorbate pairs for adsorptive heat pumping, air conditioning and refrigeration. Appl. Therm. Eng. 104, 85–95 (2016)CrossRef
21.
go back to reference A. Chakraborty, B. Saha, K.C. Ng, S. Koyama, K. Srinivasan, Theoretical insight of physical adsorption for a single-component adsorbent + adsorbate system: I. Thermodynamic property surfaces. Langmuir 25, 2204–2211 (2009)CrossRef A. Chakraborty, B. Saha, K.C. Ng, S. Koyama, K. Srinivasan, Theoretical insight of physical adsorption for a single-component adsorbent + adsorbate system: I. Thermodynamic property surfaces. Langmuir 25, 2204–2211 (2009)CrossRef
22.
go back to reference H. Stach, J. Mugele, J. Jaenchen, E. Weiller, Influence of cycle temperatures on the thermo-chemical heat storage densities in the systems water/microporous and water/mesoporous adsorbents. Adsorption 11, 393–404 (2005)CrossRef H. Stach, J. Mugele, J. Jaenchen, E. Weiller, Influence of cycle temperatures on the thermo-chemical heat storage densities in the systems water/microporous and water/mesoporous adsorbents. Adsorption 11, 393–404 (2005)CrossRef
23.
go back to reference S.K. Henninger, F.P. Schmidt, H.-M. Henning, Water adsorption characteristics of novel materials for heat transformation applications. Appl. Therm. Eng. 30, 1692–1702 (2010)CrossRef S.K. Henninger, F.P. Schmidt, H.-M. Henning, Water adsorption characteristics of novel materials for heat transformation applications. Appl. Therm. Eng. 30, 1692–1702 (2010)CrossRef
24.
go back to reference J. Jaenchen, D. Ackermann, H. Stach, W. Broesicke, Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat. Sol. Energy 76, 339–344 (2004)CrossRef J. Jaenchen, D. Ackermann, H. Stach, W. Broesicke, Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat. Sol. Energy 76, 339–344 (2004)CrossRef
25.
go back to reference G. Alefeld, R. Radermacher, Heat Conversion Systems (CRC Press, Boca Raton, 1994) G. Alefeld, R. Radermacher, Heat Conversion Systems (CRC Press, Boca Raton, 1994)
26.
go back to reference YuI Aristov, V.E. Sharonov, M.M. Tokarev, Universal relation between the boundary temperatures of a basic cycle of sorption heat machines. Chem. Eng. Sci. 63, 2907–2912 (2008)CrossRef YuI Aristov, V.E. Sharonov, M.M. Tokarev, Universal relation between the boundary temperatures of a basic cycle of sorption heat machines. Chem. Eng. Sci. 63, 2907–2912 (2008)CrossRef
27.
go back to reference M.M. Dubinin, Theory of physical adsorption of gases and vapour and adsorption properties of adsorbents of various natures and porous structures. Bull. Div. Chem. Soc. 1072–1078 (1960) M.M. Dubinin, Theory of physical adsorption of gases and vapour and adsorption properties of adsorbents of various natures and porous structures. Bull. Div. Chem. Soc. 1072–1078 (1960)
28.
go back to reference W.M. Raldow, W.E. Wentworth, Chemical heat pumps - a basic thermodynamic analysis. Sol. Energy 23, 75–79 (1979)CrossRef W.M. Raldow, W.E. Wentworth, Chemical heat pumps - a basic thermodynamic analysis. Sol. Energy 23, 75–79 (1979)CrossRef
29.
go back to reference V.E. Sharonov, YuI Aristov, Chemical and adsorption heat pumps: comments on the second law efficiency. Chem. Eng. J. 136, 419–424 (2008)CrossRef V.E. Sharonov, YuI Aristov, Chemical and adsorption heat pumps: comments on the second law efficiency. Chem. Eng. J. 136, 419–424 (2008)CrossRef
30.
go back to reference F. Meunier, Solid sorption heat powered cycles for cooling and heat pumping applications. Appl. Therm. Eng. 18, 715–729 (1998)CrossRef F. Meunier, Solid sorption heat powered cycles for cooling and heat pumping applications. Appl. Therm. Eng. 18, 715–729 (1998)CrossRef
31.
go back to reference L.Z. Zhang, L. Wang, Momentum and heat transfer in the adsorbent of a waste-heat adsorption cooling system. Energy 24, 605–624 (1999)CrossRef L.Z. Zhang, L. Wang, Momentum and heat transfer in the adsorbent of a waste-heat adsorption cooling system. Energy 24, 605–624 (1999)CrossRef
32.
go back to reference L. Marletta, G. Maggio, A. Freni, M. Ingrasciotta, G. Restuccia, A non-uniform temperature non-uniform pressure dynamic model of heat and mass transfer in compact adsorbent beds. Int. J. Heat Mass Transf. 45, 3321–3330 (2002)CrossRefMATH L. Marletta, G. Maggio, A. Freni, M. Ingrasciotta, G. Restuccia, A non-uniform temperature non-uniform pressure dynamic model of heat and mass transfer in compact adsorbent beds. Int. J. Heat Mass Transf. 45, 3321–3330 (2002)CrossRefMATH
33.
go back to reference J. Bauer, R. Herrmann, W. Mittelbach, W. Schwieger, Zeolite/aluminum composite adsorbents for application in adsorption refrigeration. Int. J. Energy Res. 33, 1233–1249 (2009)CrossRef J. Bauer, R. Herrmann, W. Mittelbach, W. Schwieger, Zeolite/aluminum composite adsorbents for application in adsorption refrigeration. Int. J. Energy Res. 33, 1233–1249 (2009)CrossRef
34.
go back to reference I.S. Girnik, Yu.I Aristov, Making adsorptive chillers more fast and efficient: the effect of bi-dispersed adsorbent bed. Appl. Therm. Eng. 106, 254–256 (2016)CrossRef I.S. Girnik, Yu.I Aristov, Making adsorptive chillers more fast and efficient: the effect of bi-dispersed adsorbent bed. Appl. Therm. Eng. 106, 254–256 (2016)CrossRef
35.
go back to reference YuI Aristov, I.S. Girnik, I.S. Glaznev, Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration. Energy 46, 484–492 (2012)CrossRef YuI Aristov, I.S. Girnik, I.S. Glaznev, Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration. Energy 46, 484–492 (2012)CrossRef
36.
go back to reference L. Bonaccorsi, A. Freni, E. Proverbio, G. Restuccia, F. Russo, Zeolite coated cooper foams for heat pumping applications. Microporous Mesoporous Mater. 91, 7–14 (2006)CrossRef L. Bonaccorsi, A. Freni, E. Proverbio, G. Restuccia, F. Russo, Zeolite coated cooper foams for heat pumping applications. Microporous Mesoporous Mater. 91, 7–14 (2006)CrossRef
37.
go back to reference D.M. Ruthven, Principles of Adsorption and Adsorption Processes (Wiley, New York, 1984) D.M. Ruthven, Principles of Adsorption and Adsorption Processes (Wiley, New York, 1984)
38.
go back to reference H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959)MATH H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959)MATH
39.
go back to reference Yu.I Aristov, Optimal adsorbent for adsorptive heat transformers: Dynamic considerations. Int. J. Refrig. 32(4), 675–686 (2009)CrossRef Yu.I Aristov, Optimal adsorbent for adsorptive heat transformers: Dynamic considerations. Int. J. Refrig. 32(4), 675–686 (2009)CrossRef
40.
go back to reference YuI Aristov, Novel materials for adsorptive heat pumping and storage: screening and nanotailoring of sorption properties (review). J. Chem. Eng. Japan 40, 1242–1251 (2007)CrossRef YuI Aristov, Novel materials for adsorptive heat pumping and storage: screening and nanotailoring of sorption properties (review). J. Chem. Eng. Japan 40, 1242–1251 (2007)CrossRef
41.
go back to reference YuI Aristov, “Heat from cold” – a new cycle for upgrading the ambient heat: adsorbent optimal from the dynamic point of view. Appl. Therm. Eng. 124, 1189–1193 (2017)CrossRef YuI Aristov, “Heat from cold” – a new cycle for upgrading the ambient heat: adsorbent optimal from the dynamic point of view. Appl. Therm. Eng. 124, 1189–1193 (2017)CrossRef
42.
go back to reference M.M. Tokarev, A.D. Grekova, L.G. Gordeeva, YuI Aristov, A new cycle “Heat from Cold” for upgrading the ambient heat: the testing a lab-scale prototype with the composite sorbent CaClBr/silica. Appl. Energy 211, 136–145 (2018)CrossRef M.M. Tokarev, A.D. Grekova, L.G. Gordeeva, YuI Aristov, A new cycle “Heat from Cold” for upgrading the ambient heat: the testing a lab-scale prototype with the composite sorbent CaClBr/silica. Appl. Energy 211, 136–145 (2018)CrossRef
43.
go back to reference L.G. Gordeeva, YuI Aristov, Composites “salt inside porous matrix” for adsorption heat transformation: a current state of the art and new trends. Int. J. Low Carbon Technol. 7(4), 288–302 (2012)CrossRef L.G. Gordeeva, YuI Aristov, Composites “salt inside porous matrix” for adsorption heat transformation: a current state of the art and new trends. Int. J. Low Carbon Technol. 7(4), 288–302 (2012)CrossRef
44.
go back to reference S. Henninger, H. Habib, C. Janiak, MOFs as adsorbents for low temperature heating and cooling applications. J. Am. Chem. Soc. 131, 2776–2777 (2009)CrossRef S. Henninger, H. Habib, C. Janiak, MOFs as adsorbents for low temperature heating and cooling applications. J. Am. Chem. Soc. 131, 2776–2777 (2009)CrossRef
45.
go back to reference F. Meunier, F. Poyelle, M.D. LeVan, Second-law analysis of adsorptive refrigeration cycles: the role of thermal coupling entropy production. Appl. Therm. Eng. 17, 43–55 (1997)CrossRef F. Meunier, F. Poyelle, M.D. LeVan, Second-law analysis of adsorptive refrigeration cycles: the role of thermal coupling entropy production. Appl. Therm. Eng. 17, 43–55 (1997)CrossRef
46.
go back to reference H.-M. Henning, Solar assisted air conditioning in buildings—an overview. Appl. Therm. Eng. 27, 1734–1749 (2007)CrossRef H.-M. Henning, Solar assisted air conditioning in buildings—an overview. Appl. Therm. Eng. 27, 1734–1749 (2007)CrossRef
47.
go back to reference J.J. Guilleminot, F. Meunier, B. Mischler, Etude de cycles intermittents `a adsorption solide pour la r´efrig´eration solaire. Revue de Physique Appliquee 15, 441–452 (1980)CrossRef J.J. Guilleminot, F. Meunier, B. Mischler, Etude de cycles intermittents `a adsorption solide pour la r´efrig´eration solaire. Revue de Physique Appliquee 15, 441–452 (1980)CrossRef
48.
go back to reference Greg, S, K. Sing, Adsorption, Specific Surface, Porosity (Academic Press, N.Y, 1967), p. 306 Greg, S, K. Sing, Adsorption, Specific Surface, Porosity (Academic Press, N.Y, 1967), p. 306
49.
go back to reference F. Meunier, Second law analysis of a solid adsorption heat pump operating on reversible cascade cycles. Heat Recover. Syst. CHP 5, 133–141 (1985)CrossRef F. Meunier, Second law analysis of a solid adsorption heat pump operating on reversible cascade cycles. Heat Recover. Syst. CHP 5, 133–141 (1985)CrossRef
50.
go back to reference I.S. Glaznev, D.S. Ovoshchnikov, YuI Aristov, Kinetics of water adsorption/desorption under isobaric stages of adsorption heat transformers: the effect of isobar shape. Int. J. Heat Mass Transf. 52(7–8), 1774–1777 (2009)CrossRef I.S. Glaznev, D.S. Ovoshchnikov, YuI Aristov, Kinetics of water adsorption/desorption under isobaric stages of adsorption heat transformers: the effect of isobar shape. Int. J. Heat Mass Transf. 52(7–8), 1774–1777 (2009)CrossRef
51.
go back to reference YuI Aristov, B. Dawoud, I.S. Glaznev, A. Elyas, A new methodology of studying the dynamics of water sorption under real operating conditions of AHPs: experiment. Int. J. Heat Mass Transf. 51, 4966–4972 (2008)CrossRef YuI Aristov, B. Dawoud, I.S. Glaznev, A. Elyas, A new methodology of studying the dynamics of water sorption under real operating conditions of AHPs: experiment. Int. J. Heat Mass Transf. 51, 4966–4972 (2008)CrossRef
52.
go back to reference I.S. Girnik, Yu.I. Aristov, A HeCol cycle for upgrading the ambient heat: the dynamic verification of desorption stage. Int. J. HMT (2017) (submitted) I.S. Girnik, Yu.I. Aristov, A HeCol cycle for upgrading the ambient heat: the dynamic verification of desorption stage. Int. J. HMT (2017) (submitted)
53.
go back to reference R. Strauss, K. Schallenberg, K.F. Knocke, Measurement of the kinetics of water vapor asorption into solid zeolite layers, in Proceedings of International Symposium on Solid Sorption Refrigeration, Paris, pp. 227–231 (1992) R. Strauss, K. Schallenberg, K.F. Knocke, Measurement of the kinetics of water vapor asorption into solid zeolite layers, in Proceedings of International Symposium on Solid Sorption Refrigeration, Paris, pp. 227–231 (1992)
54.
go back to reference B. Dawoud, Y. Aristov, Experimental study on the kinetics of water vapor sorption on selective water sorbents, silica gel and alumina under typical operating conditions of sorption heat pumps. Int. J. Heat Mass Transf. 46, 273–281 (2003)CrossRef B. Dawoud, Y. Aristov, Experimental study on the kinetics of water vapor sorption on selective water sorbents, silica gel and alumina under typical operating conditions of sorption heat pumps. Int. J. Heat Mass Transf. 46, 273–281 (2003)CrossRef
Metadata
Title
Adsorptive Heat Transformation and Storage: Thermodynamic and Kinetic Aspects
Authors
Alessio Sapienza
Andrea Frazzica
Angelo Freni
Yuri Aristov
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-51287-7_1

Premium Partners