Skip to main content
Top
Published in:

11-06-2023 | Original Paper

Advanced adaptive neural sliding mode control applied in PMSM driving system

Authors: Nguyen Tien Dat, Cao Van Kien, Ho Pham Huy Anh

Published in: Electrical Engineering | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The competitive merits of permanent magnet synchronous motor (PMSM) in the industrial environment include its high efficiency and precision. The fact is that PMSM models show highly nonlinear and high-order with time-varied parameters which require the advanced controller available. The precise and fast control with less overshoot response plays crucial factors in designing modern PMSM control schemes. This paper proposes the advanced adaptive neural sliding mode controller (ANSMC) to ensure an accurate and robust speed control for PMSM driving system. The proposed ANSMC technique based on field oriented control (FOC) scheme demonstrates its robustness and obtains competitive control quality in comparison with standard SMC and FOC-PI control methods. The PMSM speed control using proposed control approach shows the superiority over other advanced control techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Casadei D et al (2002) FOC and DTC: two viable schemes for induction motors torque control. IEEE Trans Power Electron 17(5):779–787CrossRef Casadei D et al (2002) FOC and DTC: two viable schemes for induction motors torque control. IEEE Trans Power Electron 17(5):779–787CrossRef
2.
go back to reference Wang L, Tian M, Gao Y (2007) Fuzzy self-adapting PID control of PMSM servo system. In: 2007 IEEE international electric machines & drives conference. IEEE pp 860–863 Wang L, Tian M, Gao Y (2007) Fuzzy self-adapting PID control of PMSM servo system. In: 2007 IEEE international electric machines & drives conference. IEEE pp 860–863
3.
go back to reference Hu H et al (2005) Optimal PID controller design in PMSM servo system via particle swarm optimization. In: 31st Annual conference of ieee industrial electronics society, 2005. IECON 2005. IEEE, p. 5 Hu H et al (2005) Optimal PID controller design in PMSM servo system via particle swarm optimization. In: 31st Annual conference of ieee industrial electronics society, 2005. IECON 2005. IEEE, p. 5
4.
go back to reference Xi X, Yongdong L, Min L (2005) Performance control of PMSM drives using a self-tuning PID. In: IEEE international conference on electric machines and drives, 2005. IEEE, pp 1053–1057 Xi X, Yongdong L, Min L (2005) Performance control of PMSM drives using a self-tuning PID. In: IEEE international conference on electric machines and drives, 2005. IEEE, pp 1053–1057
5.
go back to reference Junli G, Yingfan Z (2010) Research on parameter identification and PI self-tuning of PMSM. In: The 2nd international conference on information science and engineering. IEEE, pp 5251–5254 Junli G, Yingfan Z (2010) Research on parameter identification and PI self-tuning of PMSM. In: The 2nd international conference on information science and engineering. IEEE, pp 5251–5254
6.
go back to reference Zang B, Li Y (2000) A PMSM sliding mode control system based on model reference adaptive control. In: Proceedings IPEMC 2000. Third international power electronics and motion control conference (IEEE Cat. No. 00EX435). IEEE, pp 336–341 Zang B, Li Y (2000) A PMSM sliding mode control system based on model reference adaptive control. In: Proceedings IPEMC 2000. Third international power electronics and motion control conference (IEEE Cat. No. 00EX435). IEEE, pp 336–341
7.
go back to reference Zhang S, Ma X-L (2010) A PMSM sliding-mode control system based-on exponential reaching law. In: 2010 International conference on computational aspects of social networks. IEEE, pp 412–414 Zhang S, Ma X-L (2010) A PMSM sliding-mode control system based-on exponential reaching law. In: 2010 International conference on computational aspects of social networks. IEEE, pp 412–414
8.
go back to reference Yanxia S, Dinghui W, Zhicheng J (2006) Model reference fuzzy adaptive control of permanent magnet synchronous motor. In: 2006 Chinese control conference, 2006 Yanxia S, Dinghui W, Zhicheng J (2006) Model reference fuzzy adaptive control of permanent magnet synchronous motor. In: 2006 Chinese control conference, 2006
9.
go back to reference El-Sousy FFM (2004) High-performance neural-network model-following speed controller for vector-controlled PMSM drive system. In: 2004 IEEE international conference on industrial technology, 2004. IEEE ICIT'04. IEEE, pp 418–424 El-Sousy FFM (2004) High-performance neural-network model-following speed controller for vector-controlled PMSM drive system. In: 2004 IEEE international conference on industrial technology, 2004. IEEE ICIT'04. IEEE, pp 418–424
10.
go back to reference Kumar R, Gupta RA, Bansal AK (2007) Identification and control of PMSM using artificial neural network. In: 2007 IEEE international symposium on industrial electronics. IEEE, pp 30–35 Kumar R, Gupta RA, Bansal AK (2007) Identification and control of PMSM using artificial neural network. In: 2007 IEEE international symposium on industrial electronics. IEEE, pp 30–35
11.
go back to reference Zhang X et al (2012) Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques. IEEE Trans Power Electron 28(3):1358–1365CrossRef Zhang X et al (2012) Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques. IEEE Trans Power Electron 28(3):1358–1365CrossRef
12.
go back to reference Li S, Gu H (2012) Fuzzy adaptive internal model control schemes for PMSM speed-regulation system. IEEE Trans Ind Inform 8(4):767–779CrossRef Li S, Gu H (2012) Fuzzy adaptive internal model control schemes for PMSM speed-regulation system. IEEE Trans Ind Inform 8(4):767–779CrossRef
13.
go back to reference Tan LN, Cong TP, Cong DP (2021) Neural network observers and sensorless robust optimal control for partially unknown PMSM with disturbances and saturating voltages. IEEE Trans Power Electron 36(10):12045–12056CrossRef Tan LN, Cong TP, Cong DP (2021) Neural network observers and sensorless robust optimal control for partially unknown PMSM with disturbances and saturating voltages. IEEE Trans Power Electron 36(10):12045–12056CrossRef
14.
go back to reference Jankowska K, Dybkowski M (2022) Design and analysis of current sensor fault detection mechanisms for PMSM drives based on neural networks. Designs 6(1):18CrossRef Jankowska K, Dybkowski M (2022) Design and analysis of current sensor fault detection mechanisms for PMSM drives based on neural networks. Designs 6(1):18CrossRef
15.
go back to reference El-Sousy F, Alenizi F (2021) Optimal adaptive super-twisting sliding-mode control using online actor-critic neural networks for permanent-magnet synchronous motor drives. IEEE Access 9:82508–82534CrossRef El-Sousy F, Alenizi F (2021) Optimal adaptive super-twisting sliding-mode control using online actor-critic neural networks for permanent-magnet synchronous motor drives. IEEE Access 9:82508–82534CrossRef
17.
go back to reference Lin X et al (2022) Observer-based fixed-time control for permanent magnet synchronous motors with parameter uncertainties. IEEE Trans Power Electron Lin X et al (2022) Observer-based fixed-time control for permanent magnet synchronous motors with parameter uncertainties. IEEE Trans Power Electron
18.
go back to reference Hou Q et al (2021) A super-twisting-like fractional controller for SPMSM drive system. IEEE Trans Ind Electron 69(9):9376–9384CrossRef Hou Q et al (2021) A super-twisting-like fractional controller for SPMSM drive system. IEEE Trans Ind Electron 69(9):9376–9384CrossRef
19.
go back to reference Xiao Q et al (2022) Improved higher-order sliding mode controller for model predictive current control of PMSM. Prog Electromagn Res C 123. Xiao Q et al (2022) Improved higher-order sliding mode controller for model predictive current control of PMSM. Prog Electromagn Res C 123.
20.
go back to reference Xu B, Zhang L, Ji W (2021) Improved non-singular fast terminal sliding mode control with disturbance observer for PMSM drives. IEEE Trans Transp Electrif 7(4):2753–2762CrossRef Xu B, Zhang L, Ji W (2021) Improved non-singular fast terminal sliding mode control with disturbance observer for PMSM drives. IEEE Trans Transp Electrif 7(4):2753–2762CrossRef
21.
go back to reference Liu X, Yu H (2021) Continuous adaptive integral-type sliding mode control based on disturbance observer for PMSM drives. Nonlinear Dyn 104:1429–1441CrossRef Liu X, Yu H (2021) Continuous adaptive integral-type sliding mode control based on disturbance observer for PMSM drives. Nonlinear Dyn 104:1429–1441CrossRef
22.
go back to reference Lu E et al (2019) Anti-disturbance speed control of low-speed high-torque PMSM based on second-order non-singular terminal sliding mode load observer. ISA Trans 88:142–152CrossRef Lu E et al (2019) Anti-disturbance speed control of low-speed high-torque PMSM based on second-order non-singular terminal sliding mode load observer. ISA Trans 88:142–152CrossRef
23.
go back to reference Xu B et al (2022) An improved three-vector-based model predictive current control method for surface-mounted PMSM drives. IEEE Trans Transp Electrif 8(4):4418–4430CrossRef Xu B et al (2022) An improved three-vector-based model predictive current control method for surface-mounted PMSM drives. IEEE Trans Transp Electrif 8(4):4418–4430CrossRef
24.
go back to reference Dai S et al (2021) Transient performance improvement of deadbeat predictive current control of high-speed surface-mounted PMSM drives by online inductance identification. IEEE Trans Ind Electron 69(12):12358–12368CrossRef Dai S et al (2021) Transient performance improvement of deadbeat predictive current control of high-speed surface-mounted PMSM drives by online inductance identification. IEEE Trans Ind Electron 69(12):12358–12368CrossRef
25.
go back to reference Zhou Y et al (2022) Optimal solution for model predictive current control of surface mounted permanent magnet synchronous motor based on trigonometrical substitution. IEEE Trans Energy Convers 37(4):2338–2347CrossRef Zhou Y et al (2022) Optimal solution for model predictive current control of surface mounted permanent magnet synchronous motor based on trigonometrical substitution. IEEE Trans Energy Convers 37(4):2338–2347CrossRef
Metadata
Title
Advanced adaptive neural sliding mode control applied in PMSM driving system
Authors
Nguyen Tien Dat
Cao Van Kien
Ho Pham Huy Anh
Publication date
11-06-2023
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering / Issue 5/2023
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-023-01874-8

Other articles of this Issue 5/2023

Electrical Engineering 5/2023 Go to the issue