Skip to main content
Top

2019 | OriginalPaper | Chapter

Advanced Designing Assistant System for Smart Design Based on Product Image Dataset

Authors : Yi Li, Yong Dai, Li-Jun Liu, Hao Tan

Published in: Cross-Cultural Design. Methods, Tools and User Experience

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Existing product images are very important references for designing a new scheme. However, the designers have to collect and organize the product image data manually without proper tools, which may be time-consuming, inefficient and expensive. The rapid growth of product design has called for a smart system to assist designers with a quick start in designing a new product. Therefore, we propose an advanced designing assistant system (ADAS) to help the designers handle the large-volume product images more efficiently and create better design. The ADAS utilizes big data and artificial intelligence technology to achieve mass product data acquisition, analysis, retrieval, and design scheme generation. The ADAS utilizes builds a product image dataset firstly to decrease high cost of time and money in images collection task. Furthermore, based on this dataset, the ADAS develops three applications: (1) image retrieval and infringement analysis, (2) multi-label semantic annotation, (3) automatic design scheme generation. Experiments are conducted to validate the merits of the proposed system. And the results show that the ADAS could support designers with high quality from initial data collection to image retrieval, infringement analysis, semantic learning, and design scheme generation throughout the entire flow of the design task, greatly shortening the design period and improving efficiency.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Achanta, R., Estrada, F., Wils, P., Susstrunk, S.: Salient region detection and segmentation. In: International Conference on Computer Vision Systems, vol. 5008, pp. 66–75 (2008) Achanta, R., Estrada, F., Wils, P., Susstrunk, S.: Salient region detection and segmentation. In: International Conference on Computer Vision Systems, vol. 5008, pp. 66–75 (2008)
2.
go back to reference Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604, June 2009 Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604, June 2009
3.
go back to reference Calderaro, A.: Book review: big data: a revolution that will transform how we live, work, and think. Media Cult. Soc. 37(7), 1113–1115 (2015) CrossRef Calderaro, A.: Book review: big data: a revolution that will transform how we live, work, and think. Media Cult. Soc. 37(7), 1113–1115 (2015) CrossRef
4.
go back to reference Chen, C., Jiang, S.: Research of the big data platform and the traditional data acquisition and transmission based on sqoop technology. Open Autom. Control Syst. J. 7(1), 1174–1180 (2015) CrossRef Chen, C., Jiang, S.: Research of the big data platform and the traditional data acquisition and transmission based on sqoop technology. Open Autom. Control Syst. J. 7(1), 1174–1180 (2015) CrossRef
5.
go back to reference Cheng, M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.: Global contrast based salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 409–416, June 2011 Cheng, M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.: Global contrast based salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 409–416, June 2011
6.
go back to reference Fan, J., Han, F., Liu, H.: Challenges of big data analysis. Natl. Sci. Rev. 1(2), 293–314 (2014) CrossRef Fan, J., Han, F., Liu, H.: Challenges of big data analysis. Natl. Sci. Rev. 1(2), 293–314 (2014) CrossRef
7.
go back to reference Fan, J., Yang, C., Shen, Y., Babaguchi, N., Luo, H.: Leveraging large-scale weakly-tagged images to train inter-related classifiers for multi-label annotation. In: ACM Workshop on Large-Scale Multimedia Retrieval and Mining, pp. 27–34, January 2009 Fan, J., Yang, C., Shen, Y., Babaguchi, N., Luo, H.: Leveraging large-scale weakly-tagged images to train inter-related classifiers for multi-label annotation. In: ACM Workshop on Large-Scale Multimedia Retrieval and Mining, pp. 27–34, January 2009
8.
go back to reference Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning binary codes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 817–824 (2011) Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning binary codes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 817–824 (2011)
9.
go back to reference Hou, Q., Cheng, M., Hu, X., Borji, A., Tu, Z., Torr, P.H.S.: Deeply supervised salient object detection with short connections. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 815–828 (2019) CrossRef Hou, Q., Cheng, M., Hu, X., Borji, A., Tu, Z., Torr, P.H.S.: Deeply supervised salient object detection with short connections. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 815–828 (2019) CrossRef
10.
go back to reference Goodfellow, I.J., Jean Pouget-Abadie, M.M.: Generative adversarial networks. Adv. Neural Inf. Process. Syst. 3, 2672–2680 (2014) Goodfellow, I.J., Jean Pouget-Abadie, M.M.: Generative adversarial networks. Adv. Neural Inf. Process. Syst. 3, 2672–2680 (2014)
11.
go back to reference Jia, D., Russakovsky, O., Krause, J., Bernstein, M.S., Berg, A., Li, F.F.: Scalable multi-label annotation. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 3099–3102, April 2014 Jia, D., Russakovsky, O., Krause, J., Bernstein, M.S., Berg, A., Li, F.F.: Scalable multi-label annotation. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 3099–3102, April 2014
12.
go back to reference Jihyun, L., Chang, M.L.: Stimulating designers’ creativity based on a creative evolutionary system and collective intelligence in product design. Int. J. Ind. Ergon. 40(3), 295–305 (2010) CrossRef Jihyun, L., Chang, M.L.: Stimulating designers’ creativity based on a creative evolutionary system and collective intelligence in product design. Int. J. Ind. Ergon. 40(3), 295–305 (2010) CrossRef
13.
go back to reference Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv abs/1710.10196, October 2017 Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv abs/1710.10196, October 2017
14.
go back to reference Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image search. In: IEEE International Conference on Computer Vision, pp. 2130–2137 (2010) Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image search. In: IEEE International Conference on Computer Vision, pp. 2130–2137 (2010)
15.
go back to reference Kusiak, A., Salustri, F.: Computational intelligence in product design engineering: review and trends. IEEE Trans. Syst. Man Cybern. Part C 37(5), 766–778 (2007) CrossRef Kusiak, A., Salustri, F.: Computational intelligence in product design engineering: review and trends. IEEE Trans. Syst. Man Cybern. Part C 37(5), 766–778 (2007) CrossRef
16.
go back to reference Liu, W., Wang, J., Ji, R., Jiang, Y., Chang, S.: Supervised hashing with kernels. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2074–2081 (2012) Liu, W., Wang, J., Ji, R., Jiang, Y., Chang, S.: Supervised hashing with kernels. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2074–2081 (2012)
17.
go back to reference Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: International Conference on Computer Vision, pp. 3730–3738 (2015) Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: International Conference on Computer Vision, pp. 3730–3738 (2015)
18.
go back to reference Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z.: Multi-class generative adversarial networks with the L2 loss function. arXiv abs/1611.04076, November 2016 Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z.: Multi-class generative adversarial networks with the L2 loss function. arXiv abs/1611.04076, November 2016
19.
go back to reference Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. In: International Conference on Machine Learning, pp. 214–223 (2017) Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. In: International Conference on Machine Learning, pp. 214–223 (2017)
20.
go back to reference Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv abs/1511.06434, November 2015 Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv abs/1511.06434, November 2015
21.
go back to reference Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015) MathSciNetCrossRef Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015) MathSciNetCrossRef
22.
go back to reference Shanmugapriya, N., Nallusamy, R.: A new content based image retrieval system using GMM and relevance feedback. J. Comput. Sci. 10(2), 330–340 (2014) CrossRef Shanmugapriya, N., Nallusamy, R.: A new content based image retrieval system using GMM and relevance feedback. J. Comput. Sci. 10(2), 330–340 (2014) CrossRef
23.
go back to reference Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised discrete hashing. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 37–45 (2015) Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised discrete hashing. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 37–45 (2015)
25.
go back to reference Sivarajah, U., Kamal, M.M., Irani, Z., Weerakkody, V.: Critical analysis of big data challenges and analytical methods. J. Bus. Res. 70, 263–286 (2017) CrossRef Sivarajah, U., Kamal, M.M., Irani, Z., Weerakkody, V.: Critical analysis of big data challenges and analytical methods. J. Bus. Res. 70, 263–286 (2017) CrossRef
26.
go back to reference Wen, Z., et al.: A robust and discriminative image perceptual hash algorithm. In: International Conference on Genetic and Evolutionary Computing, pp. 709–712, December 2011 Wen, Z., et al.: A robust and discriminative image perceptual hash algorithm. In: International Conference on Genetic and Evolutionary Computing, pp. 709–712, December 2011
28.
go back to reference Wu, F., et al.: Weakly semi-supervised deep learning for multi-label image annotation. IEEE Trans. Big Data 1(3), 109–122 (2015) CrossRef Wu, F., et al.: Weakly semi-supervised deep learning for multi-label image annotation. IEEE Trans. Big Data 1(3), 109–122 (2015) CrossRef
29.
go back to reference Yu, F., Zhang, Y., Song, S., Seff, A., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv abs/1506.03365, June 2015 Yu, F., Zhang, Y., Song, S., Seff, A., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv abs/1506.03365, June 2015
30.
go back to reference Yun, Z., Mubarak, S.: Visual attention detection in video sequences using spatiotemporal cues. In: ACM International Conference on Multimedia, pp. 815–824, October 2006 Yun, Z., Mubarak, S.: Visual attention detection in video sequences using spatiotemporal cues. In: ACM International Conference on Multimedia, pp. 815–824, October 2006
Metadata
Title
Advanced Designing Assistant System for Smart Design Based on Product Image Dataset
Authors
Yi Li
Yong Dai
Li-Jun Liu
Hao Tan
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-22577-3_2