Skip to main content
Top

2018 | OriginalPaper | Chapter

Advanced Discretization Methods for Contact Mechanics

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modeling of contact problems is essential for many problems in engineering in order to predict the behaviour and response of various systems. One can think of pile driving, complex bearings, connections in Civil Engineering, of vehicle road interaction, machines and forming processes in Mechanical Engineering and of MEMS and electrical circuits in Electrical Engineering. All these systems need predictions of the behaviour, durability and efficiency. Hence models are needed that have to be solved by numerical methods due to their complexity. This contribution is aimed at modeling of contact in solid mechanics. Due to the necessity to use numerical methods for the solution of most contact applications this paper will focus mainly on numerical simulation models. Here especially new methodologies are considered that are non-standard and open the possibility for more general application ranges when compared to conventional approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Here we use the standard relations \(\mathbf a_\alpha ^2 \cdot \mathbf a^{2\beta } = \delta _\alpha ^\beta \) and \(\mathbf A_\alpha ^2 \cdot \mathbf A^{2\beta } = \delta _\alpha ^\beta \). Furthermore \((\,\,)_{,\alpha }\) denotes differentiation with respect to the convective coordinate \(\xi ^\alpha \).
 
2
For the analysis of small deformation problems the kinematical relation (1) can be linearized which yields
$$\begin{aligned} \, \Delta {g}_{N+} \ = \ [\, {\mathbf u}^1 - \hat{\mathbf u}^2(\bar{\varvec{\xi } }) \, ] \cdot \bar{\mathbf N}^2 + g_0\,. \qquad \qquad {(4)} \end{aligned}$$
\(\mathbf u^\gamma \) represents the displacement field which is introduced in the kinematically linear case to connect the current and the reference configuration via: \(\mathbf x^\gamma = \mathbf X^\gamma + \mathbf u^\gamma \). The variable \(g_0\) denotes the initial gap between the two bodies which is given by \(g_0 = [\mathbf X^1 - \hat{\mathbf X}^2 (\bar{\varvec{\xi }})] \cdot \overline{\mathbf N}^2\) and the normal \(\bar{\mathbf N}^2=(\bar{\mathbf A}^2_1 \times \bar{\mathbf A}^2_2) \,/\, \Vert \bar{\mathbf A}^2_1 \times \bar{\mathbf A}^2_2 \Vert \) is related to the reference configuration.
 
3
Note that this simple and efficient computation of the virtual ansatz space is only valid for linear interpolations. For quadratic interpolations one has to use the weak form (10).
 
4
Since the parameters \(a_i\) describing the projection never enter the formulation explicitly the name virtual elements was introduced.
 
5
In general the virtual element method leads to stiffness matrices that have the same nodal degrees of freedom as finite elements. Thus VEM fits in the standard FEM framework and hence the VEM can easily be combined with standard finite elements. This can be additionally explored to create a node-to-node contact approach for contact situations with non-matching meshes that is very simple to formulate.
 
6
For large sliding, one has to start this update algorithm at every incremental step of the Newton procedure in order to obtain the current local contact connections.
 
7
This interpolation is the same as in (34) and thus consistent with the VEM formulation.
 
8
The same constitutive relation is used for the stabilization term (45), however with different Lame constants.
 
9
In case of friction two additional different structural tensors have to be defined that are associated with the tangents at the deformed surface of bodies \({B}^\alpha \), e.g, \(\varvec{M}_1^\alpha = \varvec{\varphi }^\alpha _{,1}\otimes \varvec{\varphi }^\alpha _{,1}\) and \(\varvec{M}_2^\alpha = \varvec{\varphi }^\alpha _{,2}\otimes \varvec{\varphi }^\alpha _{,2}\) are defined.
 
10
Note that in case of \(\omega _{min}\rightarrow 0\) the third medium approaches a two dimensional contact interface. Hence the eigenvector \(\varvec{e}_{min}\) will be equivalent to the normal vector \( \varvec{n}\) of the contact interface which means that the new formulation converges to a classical contact setting for \(\omega _{min}\rightarrow 0\).
 
Literature
go back to reference Beirão da Veiga L., Brezzi F., Cangiani A., Manzini G., Marini L. and Russo A. Basic principles of virtual element methods. Mathematical Models and Methods in Applied Sciences, 23(01):199–214 (2013).MathSciNetCrossRef Beirão da Veiga L., Brezzi F., Cangiani A., Manzini G., Marini L. and Russo A. Basic principles of virtual element methods. Mathematical Models and Methods in Applied Sciences, 23(01):199–214 (2013).MathSciNetCrossRef
go back to reference Beirão Da Veiga L., Brezzi F. and Marini L. Virtual Elements for linear elasticity problems. SIAM Journal on Numerical Analysis, 51(2):794–812 (2013).MathSciNetCrossRef Beirão Da Veiga L., Brezzi F. and Marini L. Virtual Elements for linear elasticity problems. SIAM Journal on Numerical Analysis, 51(2):794–812 (2013).MathSciNetCrossRef
go back to reference Beirão da Veiga L., Brezzi F., Marini L.D. and Russo A. The Hitchhiker’s Guide to the Virtual Element Method. Mathematical Models and Methods in Applied Sciences, 24(08):1541–1573 (2014).MathSciNetCrossRef Beirão da Veiga L., Brezzi F., Marini L.D. and Russo A. The Hitchhiker’s Guide to the Virtual Element Method. Mathematical Models and Methods in Applied Sciences, 24(08):1541–1573 (2014).MathSciNetCrossRef
go back to reference Beirão Da Veiga L., Lovadina C. and Mora D. A Virtual Element Method for elastic and inelastic problems on polytope meshes. Computer Methods in Applied Mechanics and Engineering, 295:327–346 (2015).MathSciNetCrossRef Beirão Da Veiga L., Lovadina C. and Mora D. A Virtual Element Method for elastic and inelastic problems on polytope meshes. Computer Methods in Applied Mechanics and Engineering, 295:327–346 (2015).MathSciNetCrossRef
go back to reference Chi H., Beirão da Veiga L. and Paulino G. Some basic formulations of the virtual element method (VEM) for finite deformations. Computer Methods in Applied Mechanics and Engineering, 318:148–192 (2017).MathSciNetCrossRef Chi H., Beirão da Veiga L. and Paulino G. Some basic formulations of the virtual element method (VEM) for finite deformations. Computer Methods in Applied Mechanics and Engineering, 318:148–192 (2017).MathSciNetCrossRef
go back to reference Cottrell J.A., Hughes T.J.R. and Bazilevs Y. Isogeometric Analysis. Wiley (2009). Cottrell J.A., Hughes T.J.R. and Bazilevs Y. Isogeometric Analysis. Wiley (2009).
go back to reference Dimitri R., De Lorenzis L., Scott M., Wriggers P., Taylor R. and Zavarise G. Isogeometric large deformation frictionless contact using t-splines. Computer Methods in Applied Mechanics and Engineering, 269:394–414 (2014).MathSciNetCrossRef Dimitri R., De Lorenzis L., Scott M., Wriggers P., Taylor R. and Zavarise G. Isogeometric large deformation frictionless contact using t-splines. Computer Methods in Applied Mechanics and Engineering, 269:394–414 (2014).MathSciNetCrossRef
go back to reference de Lorenzis L., Temizer I., Wriggers P. and Zavarise G. A large deformation frictional contact formulation using NURBS-based isogeometric analysis. International Journal for Numerical Methods in Engineering, 87:1278–1300 (2011).MathSciNetMATH de Lorenzis L., Temizer I., Wriggers P. and Zavarise G. A large deformation frictional contact formulation using NURBS-based isogeometric analysis. International Journal for Numerical Methods in Engineering, 87:1278–1300 (2011).MathSciNetMATH
go back to reference de Lorenzis L., Wriggers P. and Zavarise G. Isogeometric analysis of 3d large deformation contact problems with the augmented lagrangian formulation. Computational Mechanics, 49:1–20 (2012).MathSciNetCrossRef de Lorenzis L., Wriggers P. and Zavarise G. Isogeometric analysis of 3d large deformation contact problems with the augmented lagrangian formulation. Computational Mechanics, 49:1–20 (2012).MathSciNetCrossRef
go back to reference Eterovic A.L. and Bathe K.J. An interface interpolation scheme for quadratic convergence in the finite element analysis of contact problems. In Computational Methods in Nonlinear Mechanics, pages 703–715. Springer-Verlag, Berlin, New York (1991). Eterovic A.L. and Bathe K.J. An interface interpolation scheme for quadratic convergence in the finite element analysis of contact problems. In Computational Methods in Nonlinear Mechanics, pages 703–715. Springer-Verlag, Berlin, New York (1991).
go back to reference Fischer K.A. and Wriggers P. Frictionless 2d contact formulations for finite deformations based on the mortar method. Computational Mechanics, 36:226–244 (2005).CrossRef Fischer K.A. and Wriggers P. Frictionless 2d contact formulations for finite deformations based on the mortar method. Computational Mechanics, 36:226–244 (2005).CrossRef
go back to reference Fischer K.A. and Wriggers P. Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput. Methods Appl. Mech. Engrg., 2006:5020–5036 (2006).MathSciNetCrossRef Fischer K.A. and Wriggers P. Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput. Methods Appl. Mech. Engrg., 2006:5020–5036 (2006).MathSciNetCrossRef
go back to reference Franke D., Düster A., Nübel V. and Rank E. A comparison of the h-, p-, hp-, and rp-version of the FEM for the solution of the 2D Hertzian contact problem. Computational Mechanics, 45:513–522 (2010).CrossRef Franke D., Düster A., Nübel V. and Rank E. A comparison of the h-, p-, hp-, and rp-version of the FEM for the solution of the 2D Hertzian contact problem. Computational Mechanics, 45:513–522 (2010).CrossRef
go back to reference Gain A.L., Talischi C. and Paulino G.H. On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Computer Methods in Applied Mechanics and Engineering, 282:132–160 (2014).MathSciNetCrossRef Gain A.L., Talischi C. and Paulino G.H. On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Computer Methods in Applied Mechanics and Engineering, 282:132–160 (2014).MathSciNetCrossRef
go back to reference Hartmann S., Oliver J., Weyler R., Cante J. and Hernndez J. A contact domain method for large deformation frictional contact problems. part 2: Numerical aspects. Computer Methods in Applied Mechanics and Engineering, 198:2607–2631 (2009).MathSciNetCrossRef Hartmann S., Oliver J., Weyler R., Cante J. and Hernndez J. A contact domain method for large deformation frictional contact problems. part 2: Numerical aspects. Computer Methods in Applied Mechanics and Engineering, 198:2607–2631 (2009).MathSciNetCrossRef
go back to reference Hesch C. and Betsch P. A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems. Int. J. Numer. Meth. Engng., 77:1468–1500 (2009).MathSciNetCrossRef Hesch C. and Betsch P. A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems. Int. J. Numer. Meth. Engng., 77:1468–1500 (2009).MathSciNetCrossRef
go back to reference Hüeber S. and Wohlmuth B.I. Thermo-mechanical contact problems on non-matching meshes. Comput. Methods Appl. Mech. Engrg., 198:1338–1350 (2009).CrossRef Hüeber S. and Wohlmuth B.I. Thermo-mechanical contact problems on non-matching meshes. Comput. Methods Appl. Mech. Engrg., 198:1338–1350 (2009).CrossRef
go back to reference Hughes T.J.R., Reali A. and Sangalli G. Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 199:301–313 (2010).MathSciNetCrossRef Hughes T.J.R., Reali A. and Sangalli G. Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 199:301–313 (2010).MathSciNetCrossRef
go back to reference Johnson K.L. Contact Mechanics. Cambridge University Press (1985). Johnson K.L. Contact Mechanics. Cambridge University Press (1985).
go back to reference Krstulovic-Opara L., Wriggers P. and Korelc J. A \({C}^1\)-continuous formulation for 3d finite deformation frictional contact. Computational Mechanics, 29:27–42 (2002).MathSciNetCrossRef Krstulovic-Opara L., Wriggers P. and Korelc J. A \({C}^1\)-continuous formulation for 3d finite deformation frictional contact. Computational Mechanics, 29:27–42 (2002).MathSciNetCrossRef
go back to reference Krysl P. Mean-strain eight-node hexahedron with optimized energy-sampling stabilization for large-strain deformation. International Journal for Numerical Methods in Engineering, 103:650–670 (2015).MathSciNetCrossRef Krysl P. Mean-strain eight-node hexahedron with optimized energy-sampling stabilization for large-strain deformation. International Journal for Numerical Methods in Engineering, 103:650–670 (2015).MathSciNetCrossRef
go back to reference Labra C., Rojek J., Onate E. and Zarate F. Advances in discrete element modelling of underground excavations. Acta Geotechnica, 3:317–322 (2008).CrossRef Labra C., Rojek J., Onate E. and Zarate F. Advances in discrete element modelling of underground excavations. Acta Geotechnica, 3:317–322 (2008).CrossRef
go back to reference Laursen T.A. Computational Contact and Impact Mechanics. Springer, Berlin, New York, Heidelberg (2002).MATH Laursen T.A. Computational Contact and Impact Mechanics. Springer, Berlin, New York, Heidelberg (2002).MATH
go back to reference Oliver J., Hartmann S., Cante J., Weyler R. and Hernndez J. A contact domain method for large deformation frictional contact problems. part 1: Theoretical basis. Computer Methods in Applied Mechanics and Engineering, 198:2591–2606 (2009).MathSciNetCrossRef Oliver J., Hartmann S., Cante J., Weyler R. and Hernndez J. A contact domain method for large deformation frictional contact problems. part 1: Theoretical basis. Computer Methods in Applied Mechanics and Engineering, 198:2591–2606 (2009).MathSciNetCrossRef
go back to reference Onate E., Idelsohn S.R., Celigueta M.A. and Rossi R. Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Computer Methods in Applied Mechanics and Engineering, 197:1777–1800 (2008).MathSciNetCrossRef Onate E., Idelsohn S.R., Celigueta M.A. and Rossi R. Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Computer Methods in Applied Mechanics and Engineering, 197:1777–1800 (2008).MathSciNetCrossRef
go back to reference Padmanabhan V. and Laursen T. A framework for development of surface smoothing procedures in large deformation frictional contact analysis. Finite Elements in Analysis and Design, 37:173–198 (2001).CrossRef Padmanabhan V. and Laursen T. A framework for development of surface smoothing procedures in large deformation frictional contact analysis. Finite Elements in Analysis and Design, 37:173–198 (2001).CrossRef
go back to reference Piegl L. and Tiller W. The NURBS Book. Springer, Berlin Heidelberg New York, \(2^{\text{nd}}\) edition (1996). Piegl L. and Tiller W. The NURBS Book. Springer, Berlin Heidelberg New York, \(2^{\text{nd}}\) edition (1996).
go back to reference Pietrzak G. and Curnier A. Large deformation frictional contact mechanics: continuum formulation and augmented lagrangean treatment. Computer Methods in Applied Mechanics and Engineering, 177:351–381 (1999).MathSciNetCrossRef Pietrzak G. and Curnier A. Large deformation frictional contact mechanics: continuum formulation and augmented lagrangean treatment. Computer Methods in Applied Mechanics and Engineering, 177:351–381 (1999).MathSciNetCrossRef
go back to reference Popp A., Gee M.W. and Wall W.A. A finite deformation mortar contact formulation using a primal-dual active set strategy. Int. J. Numer. Meth. Engng., 79:1354–1391 (2009).MathSciNetCrossRef Popp A., Gee M.W. and Wall W.A. A finite deformation mortar contact formulation using a primal-dual active set strategy. Int. J. Numer. Meth. Engng., 79:1354–1391 (2009).MathSciNetCrossRef
go back to reference Puso M.A., Laursen T.A. and j. Solberg. A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput. Methods Appl. Mech. Engrg., 197:555–566 (2008).MathSciNetCrossRef Puso M.A., Laursen T.A. and j. Solberg. A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput. Methods Appl. Mech. Engrg., 197:555–566 (2008).MathSciNetCrossRef
go back to reference Schröder J. Anisotropic polyconvex energies. In J. Schröder, editor, Polyconvex Analysis, pages 1–53. CISM, Springer, Wien (2009). 62. Schröder J. Anisotropic polyconvex energies. In J. Schröder, editor, Polyconvex Analysis, pages 1–53. CISM, Springer, Wien (2009). 62.
go back to reference Temizer I., Wriggers P. and Hughes T.J.R. Contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering, 200:1100–1112 (2011).MathSciNetCrossRef Temizer I., Wriggers P. and Hughes T.J.R. Contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering, 200:1100–1112 (2011).MathSciNetCrossRef
go back to reference Temizer I., Wriggers P. and Hughes T.J.R. Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering, 209-211:115–128 (2012).MathSciNetCrossRef Temizer I., Wriggers P. and Hughes T.J.R. Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering, 209-211:115–128 (2012).MathSciNetCrossRef
go back to reference Tur M., Fuenmayor F.J. and Wriggers P. A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput. Methods Appl. Mech. Engrg., 198:2860–2873 (2009).MathSciNetCrossRef Tur M., Fuenmayor F.J. and Wriggers P. A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput. Methods Appl. Mech. Engrg., 198:2860–2873 (2009).MathSciNetCrossRef
go back to reference Wriggers P. Computational Contact Mechanics. \(2^{nd}\) ed., Springer, Berlin, Heidelberg, New York (2006).CrossRef Wriggers P. Computational Contact Mechanics. \(2^{nd}\) ed., Springer, Berlin, Heidelberg, New York (2006).CrossRef
go back to reference Wriggers P. Nonlinear Finite Elements. Springer, Berlin, Heidelberg, New York (2008).MATH Wriggers P. Nonlinear Finite Elements. Springer, Berlin, Heidelberg, New York (2008).MATH
go back to reference Wriggers P. and Hudobivnik B. A low order virtual element formulation for finite elasto-plastic deformations. Computer Methods in Applied Mechanics and Engineering, 327:459–477 (2017).MathSciNetCrossRef Wriggers P. and Hudobivnik B. A low order virtual element formulation for finite elasto-plastic deformations. Computer Methods in Applied Mechanics and Engineering, 327:459–477 (2017).MathSciNetCrossRef
go back to reference Wriggers P., Krstulovic-Opara L. and Korelc J. Smooth \({C}^1\)- interpolations for two-dimensional frictional contact problems. International Journal for Numerical Methods in Engineering, 51:1469–1495 (2001).MathSciNetCrossRef Wriggers P., Krstulovic-Opara L. and Korelc J. Smooth \({C}^1\)- interpolations for two-dimensional frictional contact problems. International Journal for Numerical Methods in Engineering, 51:1469–1495 (2001).MathSciNetCrossRef
go back to reference Wriggers P., Reddy B., Rust W. and Hudobivnik B. Efficient virtual element formulations for compressible and incompressible finite deformations. Computational Mechanics, 60:253–268 (2017).MathSciNetCrossRef Wriggers P., Reddy B., Rust W. and Hudobivnik B. Efficient virtual element formulations for compressible and incompressible finite deformations. Computational Mechanics, 60:253–268 (2017).MathSciNetCrossRef
go back to reference Wriggers P., Rust W. and Reddy B. A virtual element method for contact. Computational Mechanics, 58:1039–1050 (2016).MathSciNetCrossRef Wriggers P., Rust W. and Reddy B. A virtual element method for contact. Computational Mechanics, 58:1039–1050 (2016).MathSciNetCrossRef
go back to reference Wriggers P., Schröder J. and Schwarz A. A finite element method for contact using a third medium. Computational Mechanics, 52:837–847 (2013).MathSciNetCrossRef Wriggers P., Schröder J. and Schwarz A. A finite element method for contact using a third medium. Computational Mechanics, 52:837–847 (2013).MathSciNetCrossRef
go back to reference Ziefle M. and Nackenhorst U. Numerical techniques for rolling rubber wheels: treatment of inelastic material properties and frictional contact. Computational Mechanics, 42:337–356 (2008).MathSciNetCrossRef Ziefle M. and Nackenhorst U. Numerical techniques for rolling rubber wheels: treatment of inelastic material properties and frictional contact. Computational Mechanics, 42:337–356 (2008).MathSciNetCrossRef
go back to reference Zienkiewicz O.C. and Taylor R.L. The Finite Element Method, volume 1. Butterworth-Heinemann, Oxford, UK, 5th edition (2000). Zienkiewicz O.C. and Taylor R.L. The Finite Element Method, volume 1. Butterworth-Heinemann, Oxford, UK, 5th edition (2000).
Metadata
Title
Advanced Discretization Methods for Contact Mechanics
Author
Peter Wriggers
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-90155-8_2

Premium Partners