Skip to main content
Top

2018 | OriginalPaper | Chapter

5. Advanced Experimental Techniques in Geochemistry

Author : Vyacheslav Romanov

Published in: Greenhouse Gases and Clay Minerals

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Has anyone wondered why clay is the most ubiquitous geomaterial in earth’s crust but we still are in need of developing more sophisticated methods and techniques to properly characterize it? The main reason is: it is not well defined; in fact, the variations in local clay structure and composition are virtually infinite. Geological origin descriptions provide an important foundation for clay models needed for interpretation of the experimental data collected on heterogeneous samples. Chemical analysis is the most essential step in mineral analysis; it usually follows structural analysis, in order to identify the major crystalline phases and impurities. Non-destructive techniques that are complementary to crystallography are electron microscopy and NMR spectroscopy for structure determination and study of dynamics. Some of the important methods in clay mineral identification are determination of coherent scattering domain size from XRD, Bertaut-Warren-Averbach analysis, counting layers on TEM lattice-fringe images, Pt-shadowing, and calculation of the average number of fundamental particles per MacEwan crystallite. A combination of the X-ray and neutron diffraction can be used for advanced model refinement, by utilizing a technique devised by Rietveld. Synchrotron radiation can be advantageous to laboratory sources. Several other advanced techniques are described in this chapter as well. Advances (including in situ analysis) in experimental methods go hand-in-hand with advances in conceptual understanding of the experimental observations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahn, J. H., & Buseck, P. R. (1990). Layer-stacking sequences and structural disorder in mixed-layer illite/smectite: Image simulations and HRTEM imaging. American Mineralogist, 75(3–4), 267–275. Ahn, J. H., & Buseck, P. R. (1990). Layer-stacking sequences and structural disorder in mixed-layer illite/smectite: Image simulations and HRTEM imaging. American Mineralogist, 75(3–4), 267–275.
go back to reference Amarasinghe, P. M., Katti, K. S., & Katti, D. R. (2008). Molecular hydraulic properties of montmorillonite: A polarized fourier transform infrared spectroscopic study. Applied Spectroscopy, 62(12), 1303–1313.CrossRef Amarasinghe, P. M., Katti, K. S., & Katti, D. R. (2008). Molecular hydraulic properties of montmorillonite: A polarized fourier transform infrared spectroscopic study. Applied Spectroscopy, 62(12), 1303–1313.CrossRef
go back to reference Brigatti, M. F., & Mottana, A. eds. (2011). Layered mineral structures and their applications in advanced technologies. EMU Notes in Mineralogy (Vol. 11). ISBN: 978-0-903056-29-8. Brigatti, M. F., & Mottana, A. eds. (2011). Layered mineral structures and their applications in advanced technologies. EMU Notes in Mineralogy (Vol. 11). ISBN: 978-0-903056-29-8.
go back to reference Dong, H., & Peacor, D. R. (1996). TEM observations of coherent stacking relations in smectite, I/S and illite of shales; evidence for MacEwan crystallites and dominance of 2 M polytypism. Clays and Clay Minerals, 44(2), 257–275.CrossRef Dong, H., & Peacor, D. R. (1996). TEM observations of coherent stacking relations in smectite, I/S and illite of shales; evidence for MacEwan crystallites and dominance of 2 M polytypism. Clays and Clay Minerals, 44(2), 257–275.CrossRef
go back to reference Drits, V. A. (1987). Mixed-layer minerals: Diffraction methods and structural features. In Proc. International Clay Conference, Denver, 1985 (pp. 33–45). Bloomington, IN: The Clay Minerals Society. Drits, V. A. (1987). Mixed-layer minerals: Diffraction methods and structural features. In Proc. International Clay Conference, Denver, 1985 (pp. 33–45). Bloomington, IN: The Clay Minerals Society.
go back to reference Fenter, P., & Lee, S. S. (2014). Hydration layer structure at solid–water interfaces. MRS Bulletin, 39(12), 1056–1061.CrossRef Fenter, P., & Lee, S. S. (2014). Hydration layer structure at solid–water interfaces. MRS Bulletin, 39(12), 1056–1061.CrossRef
go back to reference Ferrage, E., et al. (2011). Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 2. Toward a precise coupling between molecular simulations and diffraction data. Journal of Physical Chemistry C, 115(5), 1867–1881.CrossRef Ferrage, E., et al. (2011). Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 2. Toward a precise coupling between molecular simulations and diffraction data. Journal of Physical Chemistry C, 115(5), 1867–1881.CrossRef
go back to reference Fraundorf, P., Qin, W., Moeck, P., & Mandell, E. (2005). Making sense of nanocrystal lattice fringes. Journal of Applied Physics, 98(114308), 1–10. Fraundorf, P., Qin, W., Moeck, P., & Mandell, E. (2005). Making sense of nanocrystal lattice fringes. Journal of Applied Physics, 98(114308), 1–10.
go back to reference Giesting, P., Guggenheim, S., Koster van Groos, A. F., & Busch, A. (2012). X-ray diffraction study of K- and Ca-exchanged montmorillonites in CO2 atmospheres. Environmental Science and Technology, 46(10), 5623–5630.CrossRef Giesting, P., Guggenheim, S., Koster van Groos, A. F., & Busch, A. (2012). X-ray diffraction study of K- and Ca-exchanged montmorillonites in CO2 atmospheres. Environmental Science and Technology, 46(10), 5623–5630.CrossRef
go back to reference Guthrie, G. D., & Reynolds, R. C. (1998). A coherent TEM- and XRD-description of mixed-layer illite/smectite. The Canadian Mineralogist, 36(6), 1421–1434. Guthrie, G. D., & Reynolds, R. C. (1998). A coherent TEM- and XRD-description of mixed-layer illite/smectite. The Canadian Mineralogist, 36(6), 1421–1434.
go back to reference Humphries, S. D., et al. (2011). Investigation of Mars clay analogs by remote laser induced breakdown spectroscopy (LIBS). In Proc. 42nd Lunar and Planetary Science Conference (LPSC) (p. 1851). The Woodlands, TX: Lunar and Planetary Institute. Humphries, S. D., et al. (2011). Investigation of Mars clay analogs by remote laser induced breakdown spectroscopy (LIBS). In Proc. 42nd Lunar and Planetary Science Conference (LPSC) (p. 1851). The Woodlands, TX: Lunar and Planetary Institute.
go back to reference Johnston, C. T., Sposito, G., & Erickson, C. (1992). Vibrational probe studies of water interactions with montmorillonite. Clays and Clay Minerals, 40(6), 722–730.CrossRef Johnston, C. T., Sposito, G., & Erickson, C. (1992). Vibrational probe studies of water interactions with montmorillonite. Clays and Clay Minerals, 40(6), 722–730.CrossRef
go back to reference Kulipanov, G. N. (2007). Ginzburg’s invention of undulators and their role in modern synchrotron radiation sources and free electron lasers. Physics Uspekhi, 50(4), 368–376.CrossRef Kulipanov, G. N. (2007). Ginzburg’s invention of undulators and their role in modern synchrotron radiation sources and free electron lasers. Physics Uspekhi, 50(4), 368–376.CrossRef
go back to reference Lanson, B., & Champion, D. (1991). The I/S-to-illite reaction in the late stage diagenesis. American Journal of Science, 291(5), 473–506.CrossRef Lanson, B., & Champion, D. (1991). The I/S-to-illite reaction in the late stage diagenesis. American Journal of Science, 291(5), 473–506.CrossRef
go back to reference Loring, J. S., et al. (2012). In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide. Langmuir, 28(18), 7125–7128.CrossRef Loring, J. S., et al. (2012). In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide. Langmuir, 28(18), 7125–7128.CrossRef
go back to reference Lutgens, F. K., & Tarbuck, E. J. (2014). Essentials of geology (12th ed.). Upper Saddle River, NJ: Pearson Education Inc. Lutgens, F. K., & Tarbuck, E. J. (2014). Essentials of geology (12th ed.). Upper Saddle River, NJ: Pearson Education Inc.
go back to reference Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31(1), 1–10.CrossRef Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31(1), 1–10.CrossRef
go back to reference Malla, P. B., et al. (1993). Charge heterogeneity and nanostructure of 2:1 layer silicates by high-resolution transmission electron microscopy. Clays and Clay Minerals, 41(4), 412–422.CrossRef Malla, P. B., et al. (1993). Charge heterogeneity and nanostructure of 2:1 layer silicates by high-resolution transmission electron microscopy. Clays and Clay Minerals, 41(4), 412–422.CrossRef
go back to reference Mieunier, A., Lanson, B., & Beaufort, D. (2000). Vermiculitization of smectite interfaces and illite layer growth as a possible dual model for illite-smectite illitization in diagenetic environments: A synthesis. Clay Minerals, 35(3), 573–586.CrossRef Mieunier, A., Lanson, B., & Beaufort, D. (2000). Vermiculitization of smectite interfaces and illite layer growth as a possible dual model for illite-smectite illitization in diagenetic environments: A synthesis. Clay Minerals, 35(3), 573–586.CrossRef
go back to reference Nadeau, P. H. (1985). The physical dimensions of fundamental clay particles. Clay Minerals, 20(4), 499–514.CrossRef Nadeau, P. H. (1985). The physical dimensions of fundamental clay particles. Clay Minerals, 20(4), 499–514.CrossRef
go back to reference Nadeau, P. H. (1998). Fundamental particles and the advancement of geosciences; response to Implications of TEM data for the concept of fundamental particles. The Canadian Mineralogist, 36(6), 1409–1414. Nadeau, P. H. (1998). Fundamental particles and the advancement of geosciences; response to Implications of TEM data for the concept of fundamental particles. The Canadian Mineralogist, 36(6), 1409–1414.
go back to reference Nadeau, P. H., Tait, J. M., McHardy, W. J., & Wilson, M. J. (1984). Interstratified XRD characteristics of physical mixtures of elementary clay particles. Clay Minerals, 19(1), 67–76.CrossRef Nadeau, P. H., Tait, J. M., McHardy, W. J., & Wilson, M. J. (1984). Interstratified XRD characteristics of physical mixtures of elementary clay particles. Clay Minerals, 19(1), 67–76.CrossRef
go back to reference Nieto, F., & Cuadros, J. (1998). Evolution, current situation, and geological implications of the “fundamental particle” concept. The Canadian Mineralogist, 36(6), 1415–1419. Nieto, F., & Cuadros, J. (1998). Evolution, current situation, and geological implications of the “fundamental particle” concept. The Canadian Mineralogist, 36(6), 1415–1419.
go back to reference Nishikawa, S., & Kikuchi, S. (1928). Diffraction of Cathode rays by mica. Nature, 121(3061), 1019–1020.CrossRef Nishikawa, S., & Kikuchi, S. (1928). Diffraction of Cathode rays by mica. Nature, 121(3061), 1019–1020.CrossRef
go back to reference Peacor, D. R. (1998). Implication of TEM data for the concept of fundamental particles. The Canadian Mineralogist, 36(6), 1397–1408. Peacor, D. R. (1998). Implication of TEM data for the concept of fundamental particles. The Canadian Mineralogist, 36(6), 1397–1408.
go back to reference Rammelsberg, R., Boulas, S., Chorongiewski, H., & Gerwert, K. (1999). Set-up for time-resolved step-scan FTIR spectroscopy of noncyclic reactions. Vibrational Spectroscopy, 19(1), 143–149.CrossRef Rammelsberg, R., Boulas, S., Chorongiewski, H., & Gerwert, K. (1999). Set-up for time-resolved step-scan FTIR spectroscopy of noncyclic reactions. Vibrational Spectroscopy, 19(1), 143–149.CrossRef
go back to reference Ras, R. H. A., et al. (2003). Polarized infrared study of hybrid Langmuir—Blodgett monolayers containing clay mineral nanoparticles. Langmuir, 19(10), 4295–4302.CrossRef Ras, R. H. A., et al. (2003). Polarized infrared study of hybrid Langmuir—Blodgett monolayers containing clay mineral nanoparticles. Langmuir, 19(10), 4295–4302.CrossRef
go back to reference Reynolds, R. C. (1980). Interstratified clay minerals. In G. Brindley & G. Brown (Eds.), Crystal structures of clay minerals and their X-ray identification (3rd ed., pp. 249–304). London: Mineralogical Society. Reynolds, R. C. (1980). Interstratified clay minerals. In G. Brindley & G. Brown (Eds.), Crystal structures of clay minerals and their X-ray identification (3rd ed., pp. 249–304). London: Mineralogical Society.
go back to reference Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65–71.CrossRef Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65–71.CrossRef
go back to reference Roberson, H. E., Weir, A. H., & Woods, R. D. (1968). Morphology of particles in size-fractionated Na- montmorillonites. Clays and Clay Minerals, 16(3), 239–247.CrossRef Roberson, H. E., Weir, A. H., & Woods, R. D. (1968). Morphology of particles in size-fractionated Na- montmorillonites. Clays and Clay Minerals, 16(3), 239–247.CrossRef
go back to reference Romanov, V., & Walker, G. C. (2007). Infrared near-field detection of a narrow resonance due to molecular vibrations in a nanoparticle. Langmuir, 23(5), 2829–2837.CrossRef Romanov, V., & Walker, G. C. (2007). Infrared near-field detection of a narrow resonance due to molecular vibrations in a nanoparticle. Langmuir, 23(5), 2829–2837.CrossRef
go back to reference Sposito, G., & Prost, R. (1982). Structure of water adsorbed on smectites. Chemical Reviews, 82(6), 553–573.CrossRef Sposito, G., & Prost, R. (1982). Structure of water adsorbed on smectites. Chemical Reviews, 82(6), 553–573.CrossRef
go back to reference Suvorov, A., Cai, Y. Q., Sutter, J. P., & Chubar, O. (2014). Partially coherent wavefront propagation simulations for inelastic x-ray scattering beamline including crystal optics. In Proc. SPIE 9209, Advances in Computational Methods for X-Ray Optics III (p. 92090H). Bellingham, WA: SPIE. Suvorov, A., Cai, Y. Q., Sutter, J. P., & Chubar, O. (2014). Partially coherent wavefront propagation simulations for inelastic x-ray scattering beamline including crystal optics. In Proc. SPIE 9209, Advances in Computational Methods for X-Ray Optics III (p. 92090H). Bellingham, WA: SPIE.
go back to reference Suzuki, S., Prayongphan, S., Ichikawa, Y., & Chae, B. G. (2005). In situ observations of the swelling of bentonite aggregates in NaCl solution. Applied Clay Science, 29(2), 89–98.CrossRef Suzuki, S., Prayongphan, S., Ichikawa, Y., & Chae, B. G. (2005). In situ observations of the swelling of bentonite aggregates in NaCl solution. Applied Clay Science, 29(2), 89–98.CrossRef
go back to reference Udvardi, B., et al. (2014). Application of attenuated total reflectance Fourier transform infrared spectroscopy in the mineralogical study of a landslide area, Hungary. Sedimentary Geology, 313, 1–14.CrossRef Udvardi, B., et al. (2014). Application of attenuated total reflectance Fourier transform infrared spectroscopy in the mineralogical study of a landslide area, Hungary. Sedimentary Geology, 313, 1–14.CrossRef
Metadata
Title
Advanced Experimental Techniques in Geochemistry
Author
Vyacheslav Romanov
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-12661-6_5