Skip to main content
Top

2024 | OriginalPaper | Chapter

2. Advanced ML Methods: Bridging SAR Images and Structural Health Monitoring

Authors : Alireza Entezami, Bahareh Behkamal, Carlo De Michele

Published in: Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The classical SAR-aided SHM directly analyzes displacement data obtained from SAR images. Although the extraction of displacement responses from SAR images via various interferometric techniques is of paramount importance to remote sensing-based SHM, the direct use and analysis of SAR-based displacement responses for monitoring and damage assessment of complex and critical civil structures is not a reliable and effective approach, especially in long-term monitoring with various uncertainties and variability in measured data. On this basis, this chapter proposes various machine learning methods in terms of unsupervised learning for SHM under environmental and operational conditions and different types of structural displacement responses retrieved from SAR images in terms of their sizes. In case of a large set of displacement data, an innovative probabilistic unsupervised learning method is proposed. For a small set of displacement data, this chapter proposes two unsupervised hybrid learning methods and mainly consists of three parts of data augmentation for expanding the size of small displacement responses, data normalization for removing the effects of environmental and operational conditions, and anomaly detection.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Castillo E (1988) Extreme value theory in engineering. Elsevier, San Diego Castillo E (1988) Extreme value theory in engineering. Elsevier, San Diego
go back to reference Coles S, Bawa J, Trenner L, Dorazio P (2001) An introduction to statistical modeling of extreme values, vol 208. Springer, LondonCrossRef Coles S, Bawa J, Trenner L, Dorazio P (2001) An introduction to statistical modeling of extreme values, vol 208. Springer, LondonCrossRef
go back to reference Dekkers AL, De Haan L (1989) On the estimation of the extreme-value index and large quantile estimation. Ann Stat 1795–1832 Dekkers AL, De Haan L (1989) On the estimation of the extreme-value index and large quantile estimation. Ann Stat 1795–1832
go back to reference Farneti E, Cavalagli N, Costantini M, Trillo F, Minati F, Venanzi I, Ubertini F (2022) A method for structural monitoring of multispan bridges using satellite InSAR data with uncertainty quantification and its pre-collapse application to the Albiano-Magra Bridge in Italy. Struct Health Monit. https://doi.org/10.1177/14759217221083609CrossRef Farneti E, Cavalagli N, Costantini M, Trillo F, Minati F, Venanzi I, Ubertini F (2022) A method for structural monitoring of multispan bridges using satellite InSAR data with uncertainty quantification and its pre-collapse application to the Albiano-Magra Bridge in Italy. Struct Health Monit. https://​doi.​org/​10.​1177/​1475921722108360​9CrossRef
go back to reference Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472CrossRef Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472CrossRef
go back to reference Hill BM (1975) A simple general approach to inference about the tail of a distribution. Ann Stat 3(5):1163–1174CrossRef Hill BM (1975) A simple general approach to inference about the tail of a distribution. Ann Stat 3(5):1163–1174CrossRef
go back to reference Kotz S, Nadarajah S (2000) Extreme value distributions: theory and applications. World Scientific, SingaporeCrossRef Kotz S, Nadarajah S (2000) Extreme value distributions: theory and applications. World Scientific, SingaporeCrossRef
go back to reference Kramer MA (1992) Autoassociative neural networks. Comput Chem Eng 16(4):313–328CrossRef Kramer MA (1992) Autoassociative neural networks. Comput Chem Eng 16(4):313–328CrossRef
go back to reference Neal RM (2011) MCMC using Hamiltonian dynamics. In: Handbook of Markov chain Monte Carlo. CRC Press, Boca Raton, FL, USA Neal RM (2011) MCMC using Hamiltonian dynamics. In: Handbook of Markov chain Monte Carlo. CRC Press, Boca Raton, FL, USA
go back to reference Nguyen T, Chan TH, Thambiratnam DP (2014) Field validation of controlled Monte Carlo data generation for statistical damage identification employing Mahalanobis squared distance. Struct Health Monit 13(4):473–488CrossRef Nguyen T, Chan TH, Thambiratnam DP (2014) Field validation of controlled Monte Carlo data generation for statistical damage identification employing Mahalanobis squared distance. Struct Health Monit 13(4):473–488CrossRef
go back to reference Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature: an approach using copulas, vol 56. Springer Science & Business Media Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature: an approach using copulas, vol 56. Springer Science & Business Media
go back to reference Van Ravenzwaaij D, Cassey P, Brown SD (2018) A simple introduction to Markov Chain Monte-Carlo sampling. Psychon Bull Rev 25(1):143–154CrossRefPubMed Van Ravenzwaaij D, Cassey P, Brown SD (2018) A simple introduction to Markov Chain Monte-Carlo sampling. Psychon Bull Rev 25(1):143–154CrossRefPubMed
go back to reference Yang Q, Zhang Y, Dai W, Pan SJ (2020) Transfer learning. Cambridge University Press, Cambridge, United KingdomCrossRef Yang Q, Zhang Y, Dai W, Pan SJ (2020) Transfer learning. Cambridge University Press, Cambridge, United KingdomCrossRef
Metadata
Title
Advanced ML Methods: Bridging SAR Images and Structural Health Monitoring
Authors
Alireza Entezami
Bahareh Behkamal
Carlo De Michele
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53995-4_2

Premium Partners