Skip to main content
Top

2021 | OriginalPaper | Chapter

11. Advancement in Carbon Nanotubes: Processing Techniques, Purification and Industrial Applications

Authors : Anbesh Jamwal, Muhammed Zahid Hasan, Rajeev Agrawal, Monica Sharma, Sunil Thakur, Pallav Gupta

Published in: Emerging Trends in Nanotechnology

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Right from the starting, carbon nanotubes (CNTs) have been given special attention. Numerous researchers have investigated the processing techniques, purification as well as mechano-physical properties of this advanced form of Carbon (C). At present, CNTs and its composites have gained industrial importance due to its better mechanical, optical and thermal properties when it is compared with other materials. Development in carbon nanotubes-based composites has opened up scopes for their utilization in engineering applications. Various properties such as physical, structural, thermal and mechanical have been improved due to the utilization of CNTs as the reinforcement phase in the composites. The aim of the present chapter is to report the advancement in processing techniques, purification and industrial applications of carbon nanotubes and their composites. Among all the processing techniques, chemical vapor deposition (CVD) is widely used to synthesize carbon nanotubes and oxidation techniques is used for purification purposes. This work also examines the reported literature on the processing and purification of carbon nanotubes as well as the use of carbon nanotubes in the development of composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes–the route toward applications. Science, 297(5582):787–792 Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes–the route toward applications. Science, 297(5582):787–792
2.
go back to reference Treacy MJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678 Treacy MJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678
3.
go back to reference Dillon A, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386(6623):377CrossRef Dillon A, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386(6623):377CrossRef
4.
go back to reference Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Elsevier Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Elsevier
5.
go back to reference David WI, Ibberson RM, Matthewman JC, Prassides K, Dennis TJS, Hare JP et al (1991) Crystal structure and bonding of ordered C60. Nature 353(6340):147CrossRef David WI, Ibberson RM, Matthewman JC, Prassides K, Dennis TJS, Hare JP et al (1991) Crystal structure and bonding of ordered C60. Nature 353(6340):147CrossRef
6.
go back to reference Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605CrossRef Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605CrossRef
7.
go back to reference Gojny FH, Wichmann MH, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6):2036–2045CrossRef Gojny FH, Wichmann MH, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6):2036–2045CrossRef
8.
go back to reference Ma PC, Kim JK (2011) Carbon nanotubes for polymer reinforcement. CRC Press Ma PC, Kim JK (2011) Carbon nanotubes for polymer reinforcement. CRC Press
9.
go back to reference Sakharova NA, Antunes JM, Pereira AF, Fernandes JV (2017) Developments in the evaluation of elastic properties of carbon nanotubes and their heterojunctions by numerical simulation. AIMS Mater Sci 4(3):706–737CrossRef Sakharova NA, Antunes JM, Pereira AF, Fernandes JV (2017) Developments in the evaluation of elastic properties of carbon nanotubes and their heterojunctions by numerical simulation. AIMS Mater Sci 4(3):706–737CrossRef
10.
go back to reference O’connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593–596 O’connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593–596
11.
go back to reference Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282(5386):95–98CrossRef Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282(5386):95–98CrossRef
12.
go back to reference Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298(5602):2361–2366CrossRef Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298(5602):2361–2366CrossRef
13.
go back to reference Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313(1–2):91–97CrossRef Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313(1–2):91–97CrossRef
14.
go back to reference Hersam MC (2008) Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol 3(7):387CrossRef Hersam MC (2008) Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol 3(7):387CrossRef
15.
go back to reference White CT, Todorov TN (1998) Carbon nanotubes as long ballistic conductors. Nature 393(6682):240CrossRef White CT, Todorov TN (1998) Carbon nanotubes as long ballistic conductors. Nature 393(6682):240CrossRef
16.
go back to reference Saha A, Gifford BJ, He X, Ao G, Zheng M, Kataura H et al (2018) Narrow-band single-photon emission through selective aryl functionalization of zigzag carbon nanotubes. Nat Chem 10(11):1089CrossRef Saha A, Gifford BJ, He X, Ao G, Zheng M, Kataura H et al (2018) Narrow-band single-photon emission through selective aryl functionalization of zigzag carbon nanotubes. Nat Chem 10(11):1089CrossRef
17.
go back to reference Magnin Y, Amara H, Ducastelle F, Loiseau A, Bichara C (2018) Entropy-driven stability of chiral single-walled carbon nanotubes. Science 362(6411):212–215CrossRef Magnin Y, Amara H, Ducastelle F, Loiseau A, Bichara C (2018) Entropy-driven stability of chiral single-walled carbon nanotubes. Science 362(6411):212–215CrossRef
18.
go back to reference Lotfizadeh N, Senger M, Minot E, Deshpande VV (2019) Magneto-chiral anisotropy in carbon nanotubes. Bulletin of the American Physical Society Lotfizadeh N, Senger M, Minot E, Deshpande VV (2019) Magneto-chiral anisotropy in carbon nanotubes. Bulletin of the American Physical Society
19.
go back to reference O’connell MJ (2018) Carbon nanotubes: properties and applications. CRC press O’connell MJ (2018) Carbon nanotubes: properties and applications. CRC press
20.
go back to reference He X, Htoon H, Doorn SK, Pernice WHP, Pyatkov F, Krupke R et al. (2018) Carbon nanotubes as emerging quantum-light sources. Nat Mater 1 He X, Htoon H, Doorn SK, Pernice WHP, Pyatkov F, Krupke R et al. (2018) Carbon nanotubes as emerging quantum-light sources. Nat Mater 1
21.
go back to reference Feng A, Jia Z, Yu Q, Zhang H, Wu G (2018) Preparation and characterization of carbon nanotubes/carbon fiber/phenolic composites on mechanical and thermal conductivity properties. NANO 13(04):1850037CrossRef Feng A, Jia Z, Yu Q, Zhang H, Wu G (2018) Preparation and characterization of carbon nanotubes/carbon fiber/phenolic composites on mechanical and thermal conductivity properties. NANO 13(04):1850037CrossRef
22.
go back to reference Li Y, Wang S, Wang Q, Xing M (2018) A comparison study on mechanical properties of polymer composites reinforced by carbon nanotubes and graphene sheet. Compos B Eng 133:35–41CrossRef Li Y, Wang S, Wang Q, Xing M (2018) A comparison study on mechanical properties of polymer composites reinforced by carbon nanotubes and graphene sheet. Compos B Eng 133:35–41CrossRef
23.
go back to reference Davis TA, Patberg SM, Sargent LM, Stefaniak AB, Holland LA (2018) Capillary electrophoresis analysis of affinity to assess carboxylation of multi-walled carbon nanotubes. Anal Chim Acta 1027:149–157CrossRef Davis TA, Patberg SM, Sargent LM, Stefaniak AB, Holland LA (2018) Capillary electrophoresis analysis of affinity to assess carboxylation of multi-walled carbon nanotubes. Anal Chim Acta 1027:149–157CrossRef
24.
go back to reference Sun K, Xie P, Wang Z, Su T, Shao Q, Ryu J et al (2017) Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125:50–57CrossRef Sun K, Xie P, Wang Z, Su T, Shao Q, Ryu J et al (2017) Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125:50–57CrossRef
25.
go back to reference Xu S, Liu J, Li Q (2015) Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr Build Mater 76:16–23CrossRef Xu S, Liu J, Li Q (2015) Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr Build Mater 76:16–23CrossRef
26.
go back to reference Ellahi R, Hassan M, Zeeshan A (2015) Study of natural convection MHD nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt-water solution. IEEE Trans Nanotechnol 14(4):726–734CrossRef Ellahi R, Hassan M, Zeeshan A (2015) Study of natural convection MHD nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt-water solution. IEEE Trans Nanotechnol 14(4):726–734CrossRef
27.
go back to reference Yomogida Y, Tanaka T, Zhang M, Yudasaka M, Wei X, Kataura H (2016) Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat Commun 7:12056CrossRef Yomogida Y, Tanaka T, Zhang M, Yudasaka M, Wei X, Kataura H (2016) Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat Commun 7:12056CrossRef
28.
go back to reference Lei T, Chen X, Pitner G, Wong HSP, Bao Z (2016) Removable and recyclable conjugated polymers for highly selective and high-yield dispersion and release of low-cost carbon nanotubes. J Am Chem Soc 138(3):802–805CrossRef Lei T, Chen X, Pitner G, Wong HSP, Bao Z (2016) Removable and recyclable conjugated polymers for highly selective and high-yield dispersion and release of low-cost carbon nanotubes. J Am Chem Soc 138(3):802–805CrossRef
29.
go back to reference Zhou W, Lu J, Zhou K, Yang L, Ke Y, Tang Z, Chen S (2016) CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 28:143–150CrossRef Zhou W, Lu J, Zhou K, Yang L, Ke Y, Tang Z, Chen S (2016) CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 28:143–150CrossRef
30.
go back to reference Sharma PP, Wu J, Yadav RM, Liu M, Wright CJ, Tiwary CS et al (2015) Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. AngewandteChemie Int Edn 54(46):13701–13705CrossRef Sharma PP, Wu J, Yadav RM, Liu M, Wright CJ, Tiwary CS et al (2015) Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. AngewandteChemie Int Edn 54(46):13701–13705CrossRef
31.
go back to reference Ma X, Hartmann NF, Baldwin JK, Doorn SK, Htoon H (2015) Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat Nanotechnol 10(8):671CrossRef Ma X, Hartmann NF, Baldwin JK, Doorn SK, Htoon H (2015) Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat Nanotechnol 10(8):671CrossRef
32.
go back to reference Sun Z, Ikemoto K, Fukunaga TM, Koretsune T, Arita R, Sato S, Isobe H (2019) Finite phenine nanotubes with periodic vacancy defects. Science 363(6423):151–155CrossRef Sun Z, Ikemoto K, Fukunaga TM, Koretsune T, Arita R, Sato S, Isobe H (2019) Finite phenine nanotubes with periodic vacancy defects. Science 363(6423):151–155CrossRef
33.
go back to reference Selimefendigil F, Öztop HF (2019) Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int J Heat Mass Transf 129:265–277CrossRef Selimefendigil F, Öztop HF (2019) Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int J Heat Mass Transf 129:265–277CrossRef
34.
go back to reference Song B, Wang T, Wang L, Liu H, Mai X, Wang X et al (2019) Interfacially reinforced carbon fiber/epoxy composite laminates via in-situ synthesized graphitic carbon nitride (g-C3N4). Compos B Eng 158:259–268CrossRef Song B, Wang T, Wang L, Liu H, Mai X, Wang X et al (2019) Interfacially reinforced carbon fiber/epoxy composite laminates via in-situ synthesized graphitic carbon nitride (g-C3N4). Compos B Eng 158:259–268CrossRef
35.
go back to reference Zhao J, Choe K, Shuai C, Wang A, Wang Q (2019) Free vibration analysis of functionally graded carbon nanotube reinforced composite truncated conical panels with general boundary conditions. Compos B Eng 160:225–240CrossRef Zhao J, Choe K, Shuai C, Wang A, Wang Q (2019) Free vibration analysis of functionally graded carbon nanotube reinforced composite truncated conical panels with general boundary conditions. Compos B Eng 160:225–240CrossRef
36.
go back to reference Gu H, Zhang H, Ma C, Xu X, Wang Y, Wang Z, Mai X (2019) Trace electrosprayednanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: simultaneously strengthening and toughening epoxy. Carbon 142:131–140CrossRef Gu H, Zhang H, Ma C, Xu X, Wang Y, Wang Z, Mai X (2019) Trace electrosprayednanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: simultaneously strengthening and toughening epoxy. Carbon 142:131–140CrossRef
37.
go back to reference Zhao M, Meng L, Ma L, Ma L, Yang X, Huang Y, Guo Z (2018) Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites. Compos Sci Technol 154:28–36CrossRef Zhao M, Meng L, Ma L, Ma L, Yang X, Huang Y, Guo Z (2018) Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites. Compos Sci Technol 154:28–36CrossRef
38.
go back to reference Yang W, Yang W, Song A, Sun G, Shao G (2018) 3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium–sulfur batteries. Nanoscale 10(2):816–824CrossRef Yang W, Yang W, Song A, Sun G, Shao G (2018) 3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium–sulfur batteries. Nanoscale 10(2):816–824CrossRef
39.
go back to reference Lin C, Hu L, Cheng C, Sun K, Guo X, Shao Q et al (2018) Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim Acta 260:65–72CrossRef Lin C, Hu L, Cheng C, Sun K, Guo X, Shao Q et al (2018) Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim Acta 260:65–72CrossRef
40.
go back to reference Qiu C, Zhang Z, Xiao M, Yang Y, Zhong D, Peng LM (2017) Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355(6322):271–276CrossRef Qiu C, Zhang Z, Xiao M, Yang Y, Zhong D, Peng LM (2017) Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355(6322):271–276CrossRef
41.
go back to reference Liang X, Rangom Y, Kwok CY, Pang Q, Nazar LF (2017) Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Li–S Cathode Hosts. Adv Mater 29(3):1603040CrossRef Liang X, Rangom Y, Kwok CY, Pang Q, Nazar LF (2017) Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Li–S Cathode Hosts. Adv Mater 29(3):1603040CrossRef
42.
go back to reference Mao Y, Li G, Guo Y, Li Z, Liang C, Peng X, Lin Z (2017) Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nat Commun 8:14628CrossRef Mao Y, Li G, Guo Y, Li Z, Liang C, Peng X, Lin Z (2017) Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nat Commun 8:14628CrossRef
43.
go back to reference Aijaz A, Masa J, Rösler C, Xia W, Weide P, Botz AJ et al (2016) Co@ Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. AngewandteChemie Int Edn 55(12):4087–4091CrossRef Aijaz A, Masa J, Rösler C, Xia W, Weide P, Botz AJ et al (2016) Co@ Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. AngewandteChemie Int Edn 55(12):4087–4091CrossRef
44.
go back to reference Wen L, Li F, Cheng HM (2016) Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv Mater 28(22):4306–4337CrossRef Wen L, Li F, Cheng HM (2016) Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv Mater 28(22):4306–4337CrossRef
45.
go back to reference Chen YM, Yu L, Lou XW (2016) Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. AngewandteChemie Int Edn 55(20):5990–5993CrossRef Chen YM, Yu L, Lou XW (2016) Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. AngewandteChemie Int Edn 55(20):5990–5993CrossRef
46.
go back to reference Zhao MQ, Ren CE, Ling Z, Lukatskaya MR, Zhang C, Van Aken KL et al (2015) Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater 27(2):339–345CrossRef Zhao MQ, Ren CE, Ling Z, Lukatskaya MR, Zhang C, Van Aken KL et al (2015) Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater 27(2):339–345CrossRef
47.
go back to reference Kumar S, Ahlawat W, Kumar R, Dilbaghi N (2015) Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron 70:498–503CrossRef Kumar S, Ahlawat W, Kumar R, Dilbaghi N (2015) Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron 70:498–503CrossRef
48.
go back to reference Zou X, Huang X, Goswami A, Silva R, Sathe BR, Mikmeková E, Asefa T (2014) Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. AngewandteChemie Int Edn 53(17):4372–4376CrossRef Zou X, Huang X, Goswami A, Silva R, Sathe BR, Mikmeková E, Asefa T (2014) Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. AngewandteChemie Int Edn 53(17):4372–4376CrossRef
49.
go back to reference Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri AM, Sun X (2014) Carbon nanotubes decorated with CoP nanocrystals: a Highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. AngewandteChemie Int Edn 53(26):6710–6714CrossRef Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri AM, Sun X (2014) Carbon nanotubes decorated with CoP nanocrystals: a Highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. AngewandteChemie Int Edn 53(26):6710–6714CrossRef
50.
go back to reference Shulaker MM, Hills G, Patil N, Wei H, Chen HY, Wong HSP, Mitra S (2013) Carbon nanotube computer. Nature 501(7468):526CrossRef Shulaker MM, Hills G, Patil N, Wei H, Chen HY, Wong HSP, Mitra S (2013) Carbon nanotube computer. Nature 501(7468):526CrossRef
51.
go back to reference Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AW et al. (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116):182–186 Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AW et al. (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116):182–186
52.
go back to reference Liu Y, Zhao Y, Sun B, Chen C (2012) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46(3):702–713CrossRef Liu Y, Zhao Y, Sun B, Chen C (2012) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46(3):702–713CrossRef
53.
go back to reference Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50(1):3–33CrossRef Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50(1):3–33CrossRef
54.
go back to reference Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Inter Sci 371(1):101–106CrossRef Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Inter Sci 371(1):101–106CrossRef
55.
go back to reference Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 5:571–577CrossRef Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 5:571–577CrossRef
56.
go back to reference Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1):255–259CrossRef Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1):255–259CrossRef
57.
go back to reference NASA’s Goddard Space Flight Center Report (2005) National Aeronautics and Space Administration (NASA) NASA’s Goddard Space Flight Center Report (2005) National Aeronautics and Space Administration (NASA)
58.
go back to reference Wu C, Dong G, Guan L (2010) Production of graphene sheets by a simple helium arc-discharge. Physica E 42(5):1267–1271CrossRef Wu C, Dong G, Guan L (2010) Production of graphene sheets by a simple helium arc-discharge. Physica E 42(5):1267–1271CrossRef
59.
go back to reference Saito Y, Tani Y, Kasuya A (2000) Diameters of single-wall carbon nanotubes depending on helium gas pressure in an arc discharge. J Phys Chem B 104(11):2495–2499CrossRef Saito Y, Tani Y, Kasuya A (2000) Diameters of single-wall carbon nanotubes depending on helium gas pressure in an arc discharge. J Phys Chem B 104(11):2495–2499CrossRef
60.
go back to reference Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358(6383):220CrossRef Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358(6383):220CrossRef
61.
go back to reference Zhou RM, Fleming DW, Murphy CH, Chen RC, Haddon AP (1994) Ramirez and SH Glarum. Science 263:1744CrossRef Zhou RM, Fleming DW, Murphy CH, Chen RC, Haddon AP (1994) Ramirez and SH Glarum. Science 263:1744CrossRef
62.
go back to reference Ong TP, Xiong F, Chang RPH, White CW (1992) Nucleation and growth of diamond on carbon-implanted single crystal copper surfaces. J Mater Res 7(9):2429–2439CrossRef Ong TP, Xiong F, Chang RPH, White CW (1992) Nucleation and growth of diamond on carbon-implanted single crystal copper surfaces. J Mater Res 7(9):2429–2439CrossRef
63.
go back to reference Hutchison JL, Kiselev NA, Krinichnaya EP, Krestinin AV, Loutfy RO, Morawsky AP et al (2001) Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39(5):761–770CrossRef Hutchison JL, Kiselev NA, Krinichnaya EP, Krestinin AV, Loutfy RO, Morawsky AP et al (2001) Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39(5):761–770CrossRef
64.
go back to reference Arepalli S (2004) Laser ablation process for single-walled carbon nanotube production. J Nanosci Nanotechnol 4(4):317–325CrossRef Arepalli S (2004) Laser ablation process for single-walled carbon nanotube production. J Nanosci Nanotechnol 4(4):317–325CrossRef
65.
go back to reference Bianco A, Hoebeke J, Kostarelos K, Prato M, Partidos CD (2005) Carbon nanotubes: on the road to deliver. Curr Drug Deliv 2(3):253–259CrossRef Bianco A, Hoebeke J, Kostarelos K, Prato M, Partidos CD (2005) Carbon nanotubes: on the road to deliver. Curr Drug Deliv 2(3):253–259CrossRef
66.
go back to reference Chrzanowska J, Hoffman J, Małolepszy A, Mazurkiewicz M, Kowalewski TA, Szymanski Z, Stobinski L (2015). synthesis of carbon nanotubes by the laser ablation method: effect of laser wavelength. Physica Status Solidi (b), 252(8):1860–1867 Chrzanowska J, Hoffman J, Małolepszy A, Mazurkiewicz M, Kowalewski TA, Szymanski Z, Stobinski L (2015). synthesis of carbon nanotubes by the laser ablation method: effect of laser wavelength. Physica Status Solidi (b), 252(8):1860–1867
67.
go back to reference Koziol K, Boskovic BO, Yahya N (2010) Synthesis of carbon nanostructures by CVD method. In: carbon and oxide nanostructures. Springer, Berlin, Heidelberg, pp 23–49 Koziol K, Boskovic BO, Yahya N (2010) Synthesis of carbon nanostructures by CVD method. In: carbon and oxide nanostructures. Springer, Berlin, Heidelberg, pp 23–49
68.
go back to reference Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605):147CrossRef Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605):147CrossRef
69.
go back to reference Cumings J, Mickelson W, Zettl A (2003) Simplified synthesis of double-wall carbon nanotubes. Solid State Commun 126(6):359–362CrossRef Cumings J, Mickelson W, Zettl A (2003) Simplified synthesis of double-wall carbon nanotubes. Solid State Commun 126(6):359–362CrossRef
70.
go back to reference Deck CP, Mckee GS, Vecchio KS (2006) Synthesis optimization and characterization of multiwalled carbon nanotubes. J Electron Mater 35(2):211–223CrossRef Deck CP, Mckee GS, Vecchio KS (2006) Synthesis optimization and characterization of multiwalled carbon nanotubes. J Electron Mater 35(2):211–223CrossRef
71.
go back to reference Li YL, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668):276–278CrossRef Li YL, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668):276–278CrossRef
72.
go back to reference Tang ZK, Zhang L, Wang N, Zhang XX, Wen GH, Li GD et al (2001) Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 292(5526):2462–2465CrossRef Tang ZK, Zhang L, Wang N, Zhang XX, Wen GH, Li GD et al (2001) Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 292(5526):2462–2465CrossRef
73.
go back to reference Moisala A, Nasibulin AG, Brown DP, Jiang H, Khriachtchev L, Kauppinen EI (2006) Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chem Eng Sci 61(13):4393–4402CrossRef Moisala A, Nasibulin AG, Brown DP, Jiang H, Khriachtchev L, Kauppinen EI (2006) Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chem Eng Sci 61(13):4393–4402CrossRef
74.
go back to reference Chiang IW, Brinson BE, Huang AY, Willis PA, Bronikowski MJ, Margrave JL et al (2001) Purification and characterization of single-wall carbon nanotubes (SWCNTs) obtained from the gas-phase decomposition of CO (HiPco process). J Phys Chem B 105(35):8297–8301 Chiang IW, Brinson BE, Huang AY, Willis PA, Bronikowski MJ, Margrave JL et al (2001) Purification and characterization of single-wall carbon nanotubes (SWCNTs) obtained from the gas-phase decomposition of CO (HiPco process). J Phys Chem B 105(35):8297–8301
75.
go back to reference Resasco DE, Alvarez WE, Pompeo F, Balzano L, Herrera JE, Kitiyanan B, Borgna A (2002) A scalable process for production of single-walled carbon nanotubes (SWCNTs) by catalytic disproportionation of CO on a solid catalyst. J Nanopart Res 4(1–2):131–136 Resasco DE, Alvarez WE, Pompeo F, Balzano L, Herrera JE, Kitiyanan B, Borgna A (2002) A scalable process for production of single-walled carbon nanotubes (SWCNTs) by catalytic disproportionation of CO on a solid catalyst. J Nanopart Res 4(1–2):131–136
77.
go back to reference Rafique MMA, Iqbal J (2011) Production of carbon nanotubes by different routes-a review. J Encapsul Adsorp Sci 1(02):29 Rafique MMA, Iqbal J (2011) Production of carbon nanotubes by different routes-a review. J Encapsul Adsorp Sci 1(02):29
78.
go back to reference Mirabootalebi SO, Akbari GH (2017) Methods for synthesis of carbon nanotubes-review. Int J Bio-Inorg Hybr Nanomater 6(2):49–57 Mirabootalebi SO, Akbari GH (2017) Methods for synthesis of carbon nanotubes-review. Int J Bio-Inorg Hybr Nanomater 6(2):49–57
79.
go back to reference Novoselova IA, Oliinyk NF, Volkov SV, Konchits AA, Yanchuk IB, Yefanov VS et al (2008) Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization. Physica E 40(7):2231–2237CrossRef Novoselova IA, Oliinyk NF, Volkov SV, Konchits AA, Yanchuk IB, Yefanov VS et al (2008) Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization. Physica E 40(7):2231–2237CrossRef
80.
go back to reference Vander Wal RL, Hall LJ, Berger GM (2002) Optimization of flame synthesis for carbon nanotubes using supported catalyst. J Phys Chem B 106(51):13122–13132CrossRef Vander Wal RL, Hall LJ, Berger GM (2002) Optimization of flame synthesis for carbon nanotubes using supported catalyst. J Phys Chem B 106(51):13122–13132CrossRef
81.
go back to reference Vander Wal RL, Ticich TM (2001) Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers. J Phys Chem B 105(42):10249–10256CrossRef Vander Wal RL, Ticich TM (2001) Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers. J Phys Chem B 105(42):10249–10256CrossRef
82.
go back to reference Hong H, Memon NK, Dong Z, Kear BH, Stephen DT (2019) Flame synthesis of gamma-iron-oxide (γ-Fe2O3) nanocrystal films and carbon nanotubes on stainless-steel substrates. Proc Combust Inst 37(1):1249–1256CrossRef Hong H, Memon NK, Dong Z, Kear BH, Stephen DT (2019) Flame synthesis of gamma-iron-oxide (γ-Fe2O3) nanocrystal films and carbon nanotubes on stainless-steel substrates. Proc Combust Inst 37(1):1249–1256CrossRef
83.
go back to reference Noda S, Hasegawa K, Sugime H, Kakehi K, Zhang Z, Maruyama S, Yamaguchi Y (2007) Millimeter-thick single-walled carbon nanotube forests: hidden role of catalyst support. Jpn J Appl Phys 46(5L):L399CrossRef Noda S, Hasegawa K, Sugime H, Kakehi K, Zhang Z, Maruyama S, Yamaguchi Y (2007) Millimeter-thick single-walled carbon nanotube forests: hidden role of catalyst support. Jpn J Appl Phys 46(5L):L399CrossRef
84.
go back to reference Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater Sci Semicond Process 41:67–82CrossRef Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater Sci Semicond Process 41:67–82CrossRef
85.
go back to reference Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266(5193):1961–1966CrossRef Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266(5193):1961–1966CrossRef
86.
go back to reference Kovtyukhova NI, Mallouk TE, Mayer TS (2003) Templated surface sol–gel synthesis of SiO2 nanotubes and SiO2-insulated metal nanowires. Adv Mater 15(10):780–785 Kovtyukhova NI, Mallouk TE, Mayer TS (2003) Templated surface sol–gel synthesis of SiO2 nanotubes and SiO2-insulated metal nanowires. Adv Mater 15(10):780–785
87.
go back to reference Graham AL, Carlson CA, Edmiston PL (2002) Development and characterization of molecularly imprinted sol–gel materials for the selective detection of DDT. Anal Chem 74(2):458–467CrossRef Graham AL, Carlson CA, Edmiston PL (2002) Development and characterization of molecularly imprinted sol–gel materials for the selective detection of DDT. Anal Chem 74(2):458–467CrossRef
88.
go back to reference Yang M, Yang Y, Liu Y, Shen G, Yu R (2006) Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens Bioelectron 21(7):1125–1131CrossRef Yang M, Yang Y, Liu Y, Shen G, Yu R (2006) Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens Bioelectron 21(7):1125–1131CrossRef
89.
go back to reference Chen Y, Conway MJ, Fitzgerald JD (2003) Carbon nanotubes formed in graphite after mechanical grinding and thermal annealing. Appl Phys A 76(4):633–636CrossRef Chen Y, Conway MJ, Fitzgerald JD (2003) Carbon nanotubes formed in graphite after mechanical grinding and thermal annealing. Appl Phys A 76(4):633–636CrossRef
90.
go back to reference Manafi S, Rahimipour MR, Mobasherpour I, Soltanmoradi A (2012) The synthesis of peculiar structure of springlike multiwall carbon nanofibers/nanotubes via mechanothermal method. Journal of Nanomaterials 2012:15CrossRef Manafi S, Rahimipour MR, Mobasherpour I, Soltanmoradi A (2012) The synthesis of peculiar structure of springlike multiwall carbon nanofibers/nanotubes via mechanothermal method. Journal of Nanomaterials 2012:15CrossRef
91.
go back to reference Chen Y, Conway MJ, Gerald JF, Williams JS, Chadderton LT (2004) The nucleation and growth of carbon nanotubes in a mechano-thermal process. Carbon 42(8–9):1543–1548CrossRef Chen Y, Conway MJ, Gerald JF, Williams JS, Chadderton LT (2004) The nucleation and growth of carbon nanotubes in a mechano-thermal process. Carbon 42(8–9):1543–1548CrossRef
92.
go back to reference Shiral Fernando KA, Lin Y, Sun YP (2004) High aqueous solubility of functionalized single-walled carbon nanotubes. Langmuir 20(11):4777–4778CrossRef Shiral Fernando KA, Lin Y, Sun YP (2004) High aqueous solubility of functionalized single-walled carbon nanotubes. Langmuir 20(11):4777–4778CrossRef
93.
go back to reference Park TJ, Banerjee S, Hemraj-Benny T, Wong SS (2006) Purification strategies and purity visualization techniques for single-walled carbon nanotubes. J Mater Chem 16(2):141–154CrossRef Park TJ, Banerjee S, Hemraj-Benny T, Wong SS (2006) Purification strategies and purity visualization techniques for single-walled carbon nanotubes. J Mater Chem 16(2):141–154CrossRef
94.
go back to reference Dementev N, Osswald S, Gogotsi Y, Borguet E (2009) Purification of carbon nanotubes by dynamic oxidation in air. J Mater Chem 19(42):7904–7908CrossRef Dementev N, Osswald S, Gogotsi Y, Borguet E (2009) Purification of carbon nanotubes by dynamic oxidation in air. J Mater Chem 19(42):7904–7908CrossRef
95.
go back to reference Kwon J, Kim H (2005) Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization. J Polym Sci Part A Polym Chem 43(17):3973–3985CrossRef Kwon J, Kim H (2005) Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization. J Polym Sci Part A Polym Chem 43(17):3973–3985CrossRef
96.
go back to reference Huang W, Wang Y, Luo G, Wei F (2003) 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing. Carbon 41(13):2585–2590 Huang W, Wang Y, Luo G, Wei F (2003) 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing. Carbon 41(13):2585–2590
97.
go back to reference Zhang H, Xu L, Yang F, Geng L (2010) The synthesis of polyacrylonitrile/carbon nanotube microspheres by aqueous deposition polymerization under ultrasonication. Carbon 48(3):688–695CrossRef Zhang H, Xu L, Yang F, Geng L (2010) The synthesis of polyacrylonitrile/carbon nanotube microspheres by aqueous deposition polymerization under ultrasonication. Carbon 48(3):688–695CrossRef
98.
go back to reference Kim Y, Luzzi DE (2005) Purification of pulsed laser synthesized single wall carbon nanotubes by magnetic filtration. J Phys Chem B 109(35):16636–16643CrossRef Kim Y, Luzzi DE (2005) Purification of pulsed laser synthesized single wall carbon nanotubes by magnetic filtration. J Phys Chem B 109(35):16636–16643CrossRef
99.
go back to reference Ghosh S, Bachilo SM, Weisman RB (2014) Removing aggregates from single-walled carbon nanotube samples by magnetic purification. J Phys Chem C 118(8):4489–4494CrossRef Ghosh S, Bachilo SM, Weisman RB (2014) Removing aggregates from single-walled carbon nanotube samples by magnetic purification. J Phys Chem C 118(8):4489–4494CrossRef
100.
go back to reference Bandow S, Rao AM, Williams KA, Thess A, Smalley RE, Eklund PC (1997) Purification of single-wall carbon nanotubes by microfiltration. J Phys Chem B 101(44):8839–8842CrossRef Bandow S, Rao AM, Williams KA, Thess A, Smalley RE, Eklund PC (1997) Purification of single-wall carbon nanotubes by microfiltration. J Phys Chem B 101(44):8839–8842CrossRef
101.
go back to reference Hirsch A (2002) Functionalization of single-walled carbon nanotubes. AngewandteChemie Int Edn 41(11):1853–1859CrossRef Hirsch A (2002) Functionalization of single-walled carbon nanotubes. AngewandteChemie Int Edn 41(11):1853–1859CrossRef
102.
go back to reference Gu Z, Peng H, Hauge RH, Smalley RE, Margrave JL (2002) Cutting single-wall carbon nanotubes through fluorination. Nano Lett 2(9):1009–1013CrossRef Gu Z, Peng H, Hauge RH, Smalley RE, Margrave JL (2002) Cutting single-wall carbon nanotubes through fluorination. Nano Lett 2(9):1009–1013CrossRef
103.
go back to reference Jakubus A, Godlewska K, Gromelski M, Jagiello K, Puzyn T, Stepnowski P, Paszkiewicz M (2019) The possibility to use multi-walled carbon nanotubes as a sorbent for dispersive solid phase extraction of selected pharmaceuticals and their metabolites: effect of extraction condition. Microchem J 146:1113–1125CrossRef Jakubus A, Godlewska K, Gromelski M, Jagiello K, Puzyn T, Stepnowski P, Paszkiewicz M (2019) The possibility to use multi-walled carbon nanotubes as a sorbent for dispersive solid phase extraction of selected pharmaceuticals and their metabolites: effect of extraction condition. Microchem J 146:1113–1125CrossRef
104.
go back to reference Tibbetts GG, Devour MG (1986) US Patent No. 4,565,684. US Patent and Trademark Office, Washington, DC Tibbetts GG, Devour MG (1986) US Patent No. 4,565,684. US Patent and Trademark Office, Washington, DC
105.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56CrossRef
106.
go back to reference Galvan-Garcia P, Keefer EW, Yang F, Zhang M, Fang S, Zakhidov AA et al (2007) Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns. J Biomater Sci Polym Ed 18(10):1245–1261CrossRef Galvan-Garcia P, Keefer EW, Yang F, Zhang M, Fang S, Zakhidov AA et al (2007) Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns. J Biomater Sci Polym Ed 18(10):1245–1261CrossRef
107.
go back to reference Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487CrossRef Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487CrossRef
108.
go back to reference Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. In Carbon nanotubes. Springer, Berlin, Heidelberg, pp 391–425 Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. In Carbon nanotubes. Springer, Berlin, Heidelberg, pp 391–425
109.
go back to reference Dresselhaus MS, Lin YM, Rabin O, Jorio A, Souza Filho AG, Pimenta MA et al (2003) Nanowires and nanotubes. Mater Sci Eng C 23(1–2):129–140CrossRef Dresselhaus MS, Lin YM, Rabin O, Jorio A, Souza Filho AG, Pimenta MA et al (2003) Nanowires and nanotubes. Mater Sci Eng C 23(1–2):129–140CrossRef
110.
go back to reference Smalley RE (2003) Carbon nanotubes: synthesis, structure, properties, and applications, vol. 80. Springer Science & Business Media Smalley RE (2003) Carbon nanotubes: synthesis, structure, properties, and applications, vol. 80. Springer Science & Business Media
111.
go back to reference Grimes CA, Mungle C, Kouzoudis D, Fang S, Eklund PC (2000) The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem Phys Lett 319(5–6):460–464 Grimes CA, Mungle C, Kouzoudis D, Fang S, Eklund PC (2000) The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem Phys Lett 319(5–6):460–464
112.
go back to reference Files BS, Mayeaux BM (1999) Carbon Nanotubes. Adv Mater Process 156(4):47–49 Files BS, Mayeaux BM (1999) Carbon Nanotubes. Adv Mater Process 156(4):47–49
113.
go back to reference Ajayan PM, Schadler LS (2001) Carbon nanotube filled polymer nanocomposites. Polymer Preprints(USA), 42(2):35 Ajayan PM, Schadler LS (2001) Carbon nanotube filled polymer nanocomposites. Polymer Preprints(USA), 42(2):35
114.
go back to reference Barrera EV (2000) Key methods for developing single-wall nanotube composites. JOM 52(11):38–42CrossRef Barrera EV (2000) Key methods for developing single-wall nanotube composites. JOM 52(11):38–42CrossRef
115.
116.
go back to reference Hossain S, Rahman MM, Chawla D, Kumar A, Seth PP, Gupta P, Kumar D, Agrawal R, Jamwal A (2020) Fabrication, microstructural and mechanical behavior of Al-Al2O3-SiC hybrid metal matrix composites. Mater Today Proc 21(3):1458–1461 Hossain S, Rahman MM, Chawla D, Kumar A, Seth PP, Gupta P, Kumar D, Agrawal R, Jamwal A (2020) Fabrication, microstructural and mechanical behavior of Al-Al2O3-SiC hybrid metal matrix composites. Mater Today Proc 21(3):1458–1461
117.
go back to reference Sohag MAZ, Gupta P, Kondal N, Kumar D, Singh N, Jamwal A (2020) Effect of ceramic reinforcement on the microstructural, mechanical and tribological behavior of Al–Cu alloy metal matrix composite. Mater Today Proc 21(3):1407–1411 Sohag MAZ, Gupta P, Kondal N, Kumar D, Singh N, Jamwal A (2020) Effect of ceramic reinforcement on the microstructural, mechanical and tribological behavior of Al–Cu alloy metal matrix composite. Mater Today Proc 21(3):1407–1411
118.
go back to reference Nayim STI, Hasan MZ, Seth PP, Gupta P, Thakur S, Kumar D, Jamwal A (2020) Effect of CNT and TiC hybrid reinforcement on the micro-mechano-tribo behaviour of aluminium matrix composites. Mater Today Proc 21(3):1421–1424 Nayim STI, Hasan MZ, Seth PP, Gupta P, Thakur S, Kumar D, Jamwal A (2020) Effect of CNT and TiC hybrid reinforcement on the micro-mechano-tribo behaviour of aluminium matrix composites. Mater Today Proc 21(3):1421–1424
119.
go back to reference Kumar A, Arafath MY, Gupta P, Kumar D, Hussain CM, Jamwal A (2020) Microstructural and mechano-tribological behavior of Al reinforced SiC-TiC hybrid metal matrix composite. Maters Today Proc 21(3):1417–1420 Kumar A, Arafath MY, Gupta P, Kumar D, Hussain CM, Jamwal A (2020) Microstructural and mechano-tribological behavior of Al reinforced SiC-TiC hybrid metal matrix composite. Maters Today Proc 21(3):1417–1420
120.
go back to reference Bandil K, Vashisth H, Kumar S, Verma L, Jamwal A, Kumar D et al (2019) Microstructural, mechanical and corrosion behaviour of Al–Si alloy reinforced with SiC metal matrix composite. J Compos Mater 53(28–30):4215–4223CrossRef Bandil K, Vashisth H, Kumar S, Verma L, Jamwal A, Kumar D et al (2019) Microstructural, mechanical and corrosion behaviour of Al–Si alloy reinforced with SiC metal matrix composite. J Compos Mater 53(28–30):4215–4223CrossRef
121.
go back to reference Jamwal A, Vates UK, Gupta P, Aggarwal A, Sharma BP (2019) Fabrication and characterization of Al2O3–TiC-reinforced aluminum matrix composites. In: Advances in industrial and production engineering. Springer, Singapore, pp 349–356 Jamwal A, Vates UK, Gupta P, Aggarwal A, Sharma BP (2019) Fabrication and characterization of Al2O3–TiC-reinforced aluminum matrix composites. In: Advances in industrial and production engineering. Springer, Singapore, pp 349–356
122.
go back to reference Garg P, Jamwal A, Kumar D, Sadasivuni KK, Hussain CM, Gupta P (2019) Advance research progresses in aluminium matrix composites: manufacturing & applications. J Mater Res Tech 8(5):4924–4939CrossRef Garg P, Jamwal A, Kumar D, Sadasivuni KK, Hussain CM, Gupta P (2019) Advance research progresses in aluminium matrix composites: manufacturing & applications. J Mater Res Tech 8(5):4924–4939CrossRef
123.
go back to reference Jamwal A, Prakash P, Kumar D, Singh N, Sadasivuni KK, Harshit K et al (2019) Microstructure, wear and corrosion characteristics of Cu matrix reinforced SiC–graphite hybrid composites. J Compos Mater 53(18):2545–2553CrossRef Jamwal A, Prakash P, Kumar D, Singh N, Sadasivuni KK, Harshit K et al (2019) Microstructure, wear and corrosion characteristics of Cu matrix reinforced SiC–graphite hybrid composites. J Compos Mater 53(18):2545–2553CrossRef
124.
go back to reference Jamwal A, Agrawal R, Gupta, P, Application of Multi-Criteria Decision-Making Techniques in the Optimization of Mechano-Tribological Properties of Copper-SiC-Graphite Hybrid Metal Matrix Composites. In Intelligent Manufacturing (pp 149–172). Springer, Cham Jamwal A, Agrawal R, Gupta, P, Application of Multi-Criteria Decision-Making Techniques in the Optimization of Mechano-Tribological Properties of Copper-SiC-Graphite Hybrid Metal Matrix Composites. In Intelligent Manufacturing (pp 149–172). Springer, Cham
125.
go back to reference Jamwal A, Aggarwal A, Gautam N, Devarapalli A (2018) Electro-discharge machining: recent developments and trends. Int Res J Eng Technol 5:433–448 Jamwal A, Aggarwal A, Gautam N, Devarapalli A (2018) Electro-discharge machining: recent developments and trends. Int Res J Eng Technol 5:433–448
126.
go back to reference Kakkar K, Rawat N, Jamwal A, Aggarwal A (2018) Optimization of surface roughness, material removal rate and tool wear rate in EDM using Taguchi method. Int J Adv Res Ideas Innov Technol 4(2):16–24 Kakkar K, Rawat N, Jamwal A, Aggarwal A (2018) Optimization of surface roughness, material removal rate and tool wear rate in EDM using Taguchi method. Int J Adv Res Ideas Innov Technol 4(2):16–24
127.
go back to reference Nayim ST I, Hasan MZ, Jamwal A, Thakur S, Gupta S (2019) Recent trends & developments in optimization and modelling of electro-discharge machining using modern techniques: A review. In: AIP conference proceedings, vol. 2148, No. 1. AIP Publishing LLC, p 030051 Nayim ST I, Hasan MZ, Jamwal A, Thakur S, Gupta S (2019) Recent trends & developments in optimization and modelling of electro-discharge machining using modern techniques: A review. In: AIP conference proceedings, vol. 2148, No. 1. AIP Publishing LLC, p 030051
128.
go back to reference Jamwal A, Seth PP, Kumar D, Agrawal R, Sadasivuni KK, Gupta P (2020) Microstructural, tribological and compression behaviour of Copper matrix reinforced with Graphite-SiC hybrid composites. Mater Chem Phys 123090 Jamwal A, Seth PP, Kumar D, Agrawal R, Sadasivuni KK, Gupta P (2020) Microstructural, tribological and compression behaviour of Copper matrix reinforced with Graphite-SiC hybrid composites. Mater Chem Phys 123090
129.
go back to reference He C, Zhao N, Shi C, Du X, Li J, Li H, Cui Q (2007) An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv Mater 19(8):1128–1132CrossRef He C, Zhao N, Shi C, Du X, Li J, Li H, Cui Q (2007) An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv Mater 19(8):1128–1132CrossRef
130.
go back to reference Guo B, Zhang X, Cen X, Wang X, Song M, Ni S et al (2018) Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes. Mater Charact 136:272–280CrossRef Guo B, Zhang X, Cen X, Wang X, Song M, Ni S et al (2018) Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes. Mater Charact 136:272–280CrossRef
131.
go back to reference Chen WX, Tu JP, Wang LY, Gan HY, Xu ZD, Zhang XB (2003) Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41(2):215–222CrossRef Chen WX, Tu JP, Wang LY, Gan HY, Xu ZD, Zhang XB (2003) Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41(2):215–222CrossRef
132.
go back to reference Zhan GD, Kuntz JD, Wan J, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2(1):38CrossRef Zhan GD, Kuntz JD, Wan J, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2(1):38CrossRef
133.
go back to reference Berguiga L, Bellessa J, Vocanson F, Bernstein E, Plenet JC (2006) Carbon nanotube silica glass composites in thin films by the sol–gel technique. Opt Mater 28(3):167–171CrossRef Berguiga L, Bellessa J, Vocanson F, Bernstein E, Plenet JC (2006) Carbon nanotube silica glass composites in thin films by the sol–gel technique. Opt Mater 28(3):167–171CrossRef
134.
go back to reference Xia Z, Riester L, Curtin WA, Li H, Sheldon BW, Liang J et al (2004) Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater 52(4):931–944CrossRef Xia Z, Riester L, Curtin WA, Li H, Sheldon BW, Liang J et al (2004) Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater 52(4):931–944CrossRef
135.
go back to reference Cha SI, Kim KT, Lee KH, Mo CB, Hong SH (2005) Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. ScriptaMaterialia 53(7):793–797 Cha SI, Kim KT, Lee KH, Mo CB, Hong SH (2005) Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. ScriptaMaterialia 53(7):793–797
136.
go back to reference Deng C, Zhang X, Wang D, Lin Q, Li A (2007) Preparation and characterization of carbon nanotubes/aluminum matrix composites. Mater Lett 61(8–9):1725–1728CrossRef Deng C, Zhang X, Wang D, Lin Q, Li A (2007) Preparation and characterization of carbon nanotubes/aluminum matrix composites. Mater Lett 61(8–9):1725–1728CrossRef
137.
go back to reference Yamamoto G, Shirasu K, Hashida T, Takagi T, Suk JW, An J et al (2011) Nanotube fracture during the failure of carbon nanotube/alumina composites. Carbon 49(12):3709–3716CrossRef Yamamoto G, Shirasu K, Hashida T, Takagi T, Suk JW, An J et al (2011) Nanotube fracture during the failure of carbon nanotube/alumina composites. Carbon 49(12):3709–3716CrossRef
138.
go back to reference Rul S, Lefèvre-Schlick F, Capria E, Laurent C, Peigney A (2004) Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites. Acta Mater 52(4):1061–1067CrossRef Rul S, Lefèvre-Schlick F, Capria E, Laurent C, Peigney A (2004) Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites. Acta Mater 52(4):1061–1067CrossRef
139.
go back to reference Hossain S, Rahman MM, Jamwal A, Gupta P, Thakur S, Gupta S (2019).Processing and characterization of pine epoxy based composites. In: AIP conference proceedings, vol. 2148, No. 1. AIP Publishing LLC, p 030017 Hossain S, Rahman MM, Jamwal A, Gupta P, Thakur S, Gupta S (2019).Processing and characterization of pine epoxy based composites. In: AIP conference proceedings, vol. 2148, No. 1. AIP Publishing LLC, p 030017
140.
go back to reference Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652CrossRef Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652CrossRef
141.
go back to reference Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25(6):630–645CrossRef Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25(6):630–645CrossRef
142.
go back to reference Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205CrossRef Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205CrossRef
143.
go back to reference Martone A, Formicola C, Giordano M, Zarrelli M (2010) Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Compos Sci Technol 70(7):1154–1160CrossRef Martone A, Formicola C, Giordano M, Zarrelli M (2010) Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Compos Sci Technol 70(7):1154–1160CrossRef
144.
go back to reference Xie L, Xu F, Qiu F, Lu H, Yang Y (2007) Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40(9):3296–3305CrossRef Xie L, Xu F, Qiu F, Lu H, Yang Y (2007) Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40(9):3296–3305CrossRef
145.
go back to reference Li Z, Luo G, Wei F, Huang Y (2006) Microstructure of carbon nanotubes/PET conductive composites fibers and their properties. Compos Sci Technol 66(7–8):1022–1029CrossRef Li Z, Luo G, Wei F, Huang Y (2006) Microstructure of carbon nanotubes/PET conductive composites fibers and their properties. Compos Sci Technol 66(7–8):1022–1029CrossRef
146.
go back to reference Shen J, Champagne MF, Yang Z, Yu Q, Gendron R, Guo S (2012) The development of a conductive carbon nanotube (CNT) network in CNT/polypropylene composite films during biaxial stretching. Compos A Appl Sci Manuf 43(9):1448–1453CrossRef Shen J, Champagne MF, Yang Z, Yu Q, Gendron R, Guo S (2012) The development of a conductive carbon nanotube (CNT) network in CNT/polypropylene composite films during biaxial stretching. Compos A Appl Sci Manuf 43(9):1448–1453CrossRef
147.
go back to reference Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45(26):8863–8870CrossRef Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45(26):8863–8870CrossRef
148.
go back to reference Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP et al (2003) Super-tough carbon-nanotube fibres. Nature 423(6941):703CrossRef Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP et al (2003) Super-tough carbon-nanotube fibres. Nature 423(6941):703CrossRef
149.
go back to reference Irshidat MR, Al-Saleh MH, Al-Shoubaki M (2015) Using carbon nanotubes to improve strengthening efficiency of carbon fiber/epoxy composites confined RC columns. Compos Struct 134:523–532CrossRef Irshidat MR, Al-Saleh MH, Al-Shoubaki M (2015) Using carbon nanotubes to improve strengthening efficiency of carbon fiber/epoxy composites confined RC columns. Compos Struct 134:523–532CrossRef
150.
go back to reference Lafdi K, Matzek M (2003) Carbon nanofibers as a nano-reinforcement for polymeric nanocomposites. In: The 35th international SAMPE technical conference Lafdi K, Matzek M (2003) Carbon nanofibers as a nano-reinforcement for polymeric nanocomposites. In: The 35th international SAMPE technical conference
151.
go back to reference Tarfaoui M, Lafdi K, El Moumen A (2016) Mechanical properties of carbon nanotubes based polymer composites. Compos B Eng 103:113–121CrossRef Tarfaoui M, Lafdi K, El Moumen A (2016) Mechanical properties of carbon nanotubes based polymer composites. Compos B Eng 103:113–121CrossRef
152.
go back to reference Jia X, Zhang Q, Zhao MQ, Xu GH, Huang JQ, Qian W et al (2012) Dramatic enhancements in toughness of polyimide nanocomposite via long-CNT-induced long-range creep. J Mater Chem 22(14):7050–7056CrossRef Jia X, Zhang Q, Zhao MQ, Xu GH, Huang JQ, Qian W et al (2012) Dramatic enhancements in toughness of polyimide nanocomposite via long-CNT-induced long-range creep. J Mater Chem 22(14):7050–7056CrossRef
153.
go back to reference Chu J, Young RJ, Slater TJ, Burnett TL, Coburn B, Chichignoud L, Li Z (2018) Realizing the theoretical stiffness of graphene in composites through confinement between carbon fibers. Compos A Appl Sci Manuf 113:311–317CrossRef Chu J, Young RJ, Slater TJ, Burnett TL, Coburn B, Chichignoud L, Li Z (2018) Realizing the theoretical stiffness of graphene in composites through confinement between carbon fibers. Compos A Appl Sci Manuf 113:311–317CrossRef
154.
go back to reference Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362(6414):547–553CrossRef Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362(6414):547–553CrossRef
155.
go back to reference Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y et al (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85CrossRef Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y et al (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85CrossRef
Metadata
Title
Advancement in Carbon Nanotubes: Processing Techniques, Purification and Industrial Applications
Authors
Anbesh Jamwal
Muhammed Zahid Hasan
Rajeev Agrawal
Monica Sharma
Sunil Thakur
Pallav Gupta
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9904-0_11

Premium Partners