Skip to main content
Top

2020 | OriginalPaper | Chapter

Advancements in Recycled Polyesters

Authors : A. Saravanan, P. Senthil Kumar

Published in: Environmental Footprints of Recycled Polyester

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Plastics must be arranged for reusing, which includes exertion and cost. Research is centered on discovering substances that can encourage the blending of various sorts of plastics, known as compatibilizers, enabling them to be reused together. The greater part of plastics right now reused are made out of polyethylene terephthalate (PET), which is the segment utilized in most water bottles, and polyethylene, the most exceedingly created plastic. Chemical reusing strategies with lower vitality necessities, compatibilization of blended plastic wastes to stay away from the requirement for arranging, and growing reusing advancements to generally non-recyclable polymers. “New materials enter the market gradually, and consequently the greatest effect is in growing increasingly proficient techniques to reuse the plastics that are created in huge amounts today”. The innovation of precisely arranging plastic waste has experienced a mechanical “upset”, where old plastic is separated and used to make new items at a positive cost/advantage balance. Synthetic reusing is advancing quick with innovative developments for effective recouping vitality, creation of important new concoction items, for example, monomers or petrochemical feedstocks. Mechanical advances have been accomplished on the depolymerization of plastic waste to turn one sort of plastic into another that is progressively important. Warm and reactant breaking pyrolysis into fluid energizes is progressing with promising results. Inventive bioplastics which are completely recyclable and ecologically inviting are under extreme research in numerous modern and college research centers. Biorenewable parts for thermosets, supplanting hydrocarbon-based polymers with those produced using vegetable oils or other plant-based materials. That could prompt new end-of-life alternatives, for example, treating the soil or synthetic reusing for these materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kalliala E, Nousiainen P (1999) Life cycle assessment: environmental profile of cotton and polyester/cotton fabrics. AUTEX Res J 1(1):8–20 Kalliala E, Nousiainen P (1999) Life cycle assessment: environmental profile of cotton and polyester/cotton fabrics. AUTEX Res J 1(1):8–20
2.
go back to reference Mueller R-F (2006) Biological degradation of synthetic polyesters—enzymes as potential catalysts for polyester recycling. Process Biochem 41:2124–2128CrossRef Mueller R-F (2006) Biological degradation of synthetic polyesters—enzymes as potential catalysts for polyester recycling. Process Biochem 41:2124–2128CrossRef
3.
go back to reference Utebay B, Celik P, Cay A (2019) Effects of cotton textile waste properties on recycled fibre quality. J Clean Prod 222:29–35CrossRef Utebay B, Celik P, Cay A (2019) Effects of cotton textile waste properties on recycled fibre quality. J Clean Prod 222:29–35CrossRef
4.
go back to reference Filho WL, Ellams D, Han S, Tyler D, Boiten VJ, Paco A, Moora H, Balogun A-L (2019) A review of the socio-economic advantages of textile recycling. J Clean Prod 218:10–20CrossRef Filho WL, Ellams D, Han S, Tyler D, Boiten VJ, Paco A, Moora H, Balogun A-L (2019) A review of the socio-economic advantages of textile recycling. J Clean Prod 218:10–20CrossRef
5.
go back to reference Zambrano MC, Pawlak JJ, Daystar J, Ankeny M, Cheng JJ, Venditti RA (2019) Microfibers generated from the laundering of cotton, rayon and polyester based fabrics and their aquatic biodegradation. Mar Pollut Bull 142:394–407CrossRef Zambrano MC, Pawlak JJ, Daystar J, Ankeny M, Cheng JJ, Venditti RA (2019) Microfibers generated from the laundering of cotton, rayon and polyester based fabrics and their aquatic biodegradation. Mar Pollut Bull 142:394–407CrossRef
6.
go back to reference Raheem AB, Noor ZZ, Hassan A, Hamid MKA, Samsudin SA, Sabeen AH (2019) Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: a review. J Clean Prod 225:1052–1064CrossRef Raheem AB, Noor ZZ, Hassan A, Hamid MKA, Samsudin SA, Sabeen AH (2019) Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: a review. J Clean Prod 225:1052–1064CrossRef
7.
go back to reference Park SH, Kim SH (2014) Poly (ethylene terephthalate) recycling for high value added textiles. Fash Text 1(1):1CrossRef Park SH, Kim SH (2014) Poly (ethylene terephthalate) recycling for high value added textiles. Fash Text 1(1):1CrossRef
8.
go back to reference Blackburn R, Payne J (2004) Life cycle analysis of cotton towels: impact of domestic laundering and recommendations for extending periods between washing. Green Chem 6(7):59–61CrossRef Blackburn R, Payne J (2004) Life cycle analysis of cotton towels: impact of domestic laundering and recommendations for extending periods between washing. Green Chem 6(7):59–61CrossRef
9.
go back to reference Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc London B Biol Sci 364(1526):2115–2126CrossRef Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc London B Biol Sci 364(1526):2115–2126CrossRef
10.
go back to reference Al-Salem S, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29(10):2625–2643CrossRef Al-Salem S, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29(10):2625–2643CrossRef
11.
go back to reference Thakur S, Verma A, Sharma B, Chaudhary J, Tamulevicius S, Thakur VK (2018) Recent developments in recycling of polystyrene based plastics. Curr Opin Green Sustain Chem 13:32–38CrossRef Thakur S, Verma A, Sharma B, Chaudhary J, Tamulevicius S, Thakur VK (2018) Recent developments in recycling of polystyrene based plastics. Curr Opin Green Sustain Chem 13:32–38CrossRef
12.
go back to reference Ragaert K, Delva L, Geem KV (2017) Mechanical and chemical recycling of solid plastic waste. Waste Manag 69:24–58CrossRef Ragaert K, Delva L, Geem KV (2017) Mechanical and chemical recycling of solid plastic waste. Waste Manag 69:24–58CrossRef
13.
go back to reference Delva L, Hubo S, Cardon L, Ragaert K (2018) On the role of flame retardants in mechanical recycling of solid plastic waste. Waste Manag 82:198–206CrossRef Delva L, Hubo S, Cardon L, Ragaert K (2018) On the role of flame retardants in mechanical recycling of solid plastic waste. Waste Manag 82:198–206CrossRef
14.
go back to reference George N, Kurian T (2014) Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) waste. Ind Eng Chem Res 53(37):14185–14198CrossRef George N, Kurian T (2014) Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) waste. Ind Eng Chem Res 53(37):14185–14198CrossRef
15.
go back to reference Liu W, Liu S, Liu T, Liu T, Zhang J, Liu H (2019) Eco-friendly post-consumer cotton waste recycling for regenerated cellulose fibers. Carbohyd Polym 206:141–148CrossRef Liu W, Liu S, Liu T, Liu T, Zhang J, Liu H (2019) Eco-friendly post-consumer cotton waste recycling for regenerated cellulose fibers. Carbohyd Polym 206:141–148CrossRef
Metadata
Title
Advancements in Recycled Polyesters
Authors
A. Saravanan
P. Senthil Kumar
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-9578-9_2

Premium Partners