Skip to main content
Top

09-01-2025 | REVIEW PAPER

Advancements of machine learning techniques in fiber-filled polymer composites: a review

Authors: R. Alagulakshmi, R. Ramalakshmi, Arumugaprabu Veerasimman, Geetha Palani, Manickam Selvaraj, Sanjay Basumatary

Published in: Polymer Bulletin

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The integration of machine learning (ML) techniques in the characterization and optimization of fiber-filled polymer composites is a topic of increasing importance in industries such as aerospace, automotive, and construction. Traditional experimental methods for characterizing these composites can be time-consuming and limited in scope, driving the adoption of ML approaches. This review article explores various ML paradigms and their applications in polymer composite manufacturing and process simulation. The objective of the study is to investigate ML-based methods for predicting mechanical properties, optimizing fabrication processes, conducting microstructure analysis, and predictive modeling of composite performance. Furthermore, the review addresses challenges and identifies future research opportunities in leveraging ML for advancing composite material design and optimization. By synthesizing current research findings and highlighting potential areas for development, this review contributes to the ongoing exploration of ML’s role in revolutionizing the field of fiber-filled polymer composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shahzad A (2018) Investigation into fatigue strength of natural/synthetic fiber-based composite materials. Elsevier, Amsterdam Shahzad A (2018) Investigation into fatigue strength of natural/synthetic fiber-based composite materials. Elsevier, Amsterdam
4.
go back to reference Väisänen T, Das O, Tomppo L (2017) A review on new bio-based constituents for natural fiber-polymer composites. Elsevier Ltd., AmsterdamCrossRef Väisänen T, Das O, Tomppo L (2017) A review on new bio-based constituents for natural fiber-polymer composites. Elsevier Ltd., AmsterdamCrossRef
17.
go back to reference Shirke MB, Shelke SN (2020) Significance of chemical treatment on the performance of natural fiber: a review by. i-Manager’s J Mater Sci 8(2):23 Shirke MB, Shelke SN (2020) Significance of chemical treatment on the performance of natural fiber: a review by. i-Manager’s J Mater Sci 8(2):23
20.
go back to reference Characterization of silane-treated and untreated natural fibers from stem of Leucas Aspera: Journal of Natural Fibers: vol 18(12). Accessed: Jan. 04, 2024. [Online]. Available: https://www.tandfonline.com/doi/abs/https://doi.org/10.1080/15440478.2019.1710651 Characterization of silane-treated and untreated natural fibers from stem of Leucas Aspera: Journal of Natural Fibers: vol 18(12). Accessed: Jan. 04, 2024. [Online]. Available: https://​www.​tandfonline.​com/​doi/​abs/​https://​doi.​org/​10.​1080/​15440478.​2019.​1710651
22.
go back to reference Sanjay MR, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A (2019) A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Elsevier Ltd., Amsterdam Sanjay MR, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A (2019) A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Elsevier Ltd., Amsterdam
23.
go back to reference Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. Elsevier Ltd., Amsterdam Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. Elsevier Ltd., Amsterdam
108.
120.
go back to reference Qs Khan MSMH (2019) Predicting strength and strain enhancement ratios of circular fiber-reinforced polymer tube confined concrete under axial compression using artificial neural networks. AdvStructEng 22:1426–1443 Qs Khan MSMH (2019) Predicting strength and strain enhancement ratios of circular fiber-reinforced polymer tube confined concrete under axial compression using artificial neural networks. AdvStructEng 22:1426–1443
Metadata
Title
Advancements of machine learning techniques in fiber-filled polymer composites: a review
Authors
R. Alagulakshmi
R. Ramalakshmi
Arumugaprabu Veerasimman
Geetha Palani
Manickam Selvaraj
Sanjay Basumatary
Publication date
09-01-2025
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-025-05638-1

Premium Partners