Skip to main content
Top

2024 | Book

Advances in Engineering Materials

Select Proceedings of FLAME 2022

Editors: R. K. Tyagi, Pallav Gupta, Prosenjit Das, Rajiv Prakash

Publisher: Springer Nature Singapore

Book Series : Lecture Notes in Mechanical Engineering

insite
SEARCH

About this book

This volume comprises the select proceedings of the 3rd Biennial International Conference on Future Learning Aspects of Mechanical Engineering (FLAME) 2022. It aims to provide a comprehensive and broad-spectrum picture of the state-of-the-art research and development in material science and engineering. Various topics covered include metals and composites, energy systems, advanced materials processing, materials synthesis and processing, nanotechnology, polymers and ceramics, material for semiconductor devices, fabrication technique, corrosion and degradation, corrosion, welding of advanced materials, etc. This volume will prove a valuable resource for researchers and professionals in materials engineering.

Table of Contents

Frontmatter
Improvement in Flow Distribution for Effective Thermal Management in Thermoelectric Generator for Waste Heat Recovery

In an automobile, only one-third of the total fuel energy is used for propulsion, and the remaining two-third is lost to engine coolant and the exhaust as waste. Thermoelectric generators (TEG) demonstrate huge potential in automotive applications by recovering the exhaust waste heat and converting it into direct electric power. TEG helps escalate the engine’s fuel efficiency. However, extracting waste heat from automobile exhaust using TEG manifests practical difficulties attributed to thermoelectric materials, design, and operating conditions. Ineffective configurations and heat exchanger designs lead to non-uniform flow and temperature distribution on the hot and cold sides of TEG, causing undesirable power output, which lowers the entire system’s efficiency. In this study, the flow distribution of exhaust gas through the automotive TEG with pin fin heat exchanger is simulated using Computational Fluid Dynamics (CFD). Improvement in the flow pattern using passive flow distributors such as guide vanes at different angles is analyzed to attain the temperature uniformity through the hot heat exchanger surface. A detailed analysis of flow distribution and its influence on the local and average temperature distribution is presented. Results provide critical design recommendations to improve the flow distribution in an automotive TEG for exhaust waste energy recovery.

Chander Veer, Shobhana Singh, Jasa Ram
Microstructure Characterisation and Analysis of AA2024/SiC/Carbonised Eggshell-Reinforced Hybrid Green Aluminium Matrix Composite

The driving force behind this work is to investigate the microstructure of hybrid green aluminium matrix composite (AMMCs) made of AA2024/SiC/carbonised eggshell by using the stir casting method. The stir casting procedure is utilised in this study to allow (SiC and carbonised ES) hybrid reinforcement particles to mix equally in AA2024 matrix. The composition of reinforcements in this study varies from 3 to 12 wt% of SiC and ES particles together in a step of 3, i.e. (3, 6, 9, 12) as per earlier researchers. The microstructure characterisation of AA2024/carbonised eggshell/SiC composite was carried by SEM and XRD technique. The results revealed the strong bonding and uniform distribution between particles and matrix at 3% and 6%, respectively, and agglomeration and clustering of particles is being observed with increase in wt% of reinforcement beyond 6%. The term “Green” is being added to signify waste reduction from the environment by using ES as a waste reinforcement and to make our environment sustainable and eco-friendly.

Yatan Nagpal, Rohit Sharma, Neeraj Sharma, R. K. Tyagi
Passive Thermal Management of a PV Module Using Fins of Various Geometries: A Numerical Study

The working temperature of a photovoltaic (PV) module is an essential attribute that influences both its power output and lifespan. Some of the working challenges encountered after the installation of solar PV modules in regions with high solar irradiance include the reduction in electrical output efficiency due to the rise in the surface temperature. Adding fins to the rear side of a PV module is one of the passive cooling solutions for lowering operating temperatures. In this paper, the working temperature of a monocrystalline silicon PV module with an air-cooled heat sink was studied numerically. The heat sink, in the form of pin fins, rectangular fins, and rectangular fins with single step change (RFSSC), was made of copper, because of its high thermal conductivity and attached to the bottom face of the PV module. The conversion efficiency and cell temperature have been investigated for these three configurations of fin geometry for varying flux conditions. The cooling effectiveness was established by comparing numerically computed 3D models of the module to investigate the influence of operating temperatures over the module’s performance. It was observed that adding RFSSC to the PV module resulted in maximum improvement in the power output to the tune of 20.85% owing to the reduction in average operating temperature by 28 °C.

Vipul Kumar, Vibhor Kumar Gupta, Shwetanshu Goel, Akhilesh Arora
Experimental Investigation for Mechanical Performance of Plant Fiber-Based Polymer Composites

The demand of biocomposites has been increased in the past few years due to their improved mechanical properties such as light weight, high strength and thermal stability. Most of composites are not biodegradable or even recyclable damaging the flora and fauna. Several research and modification has been done to make biocomposites capable to stand against the conventional or synthetic composites and to increase spectrum of usability as biocomposites are non-toxic, ecofriendly and can be recycled or decomposed under controlled environment. The present work reports the fabrication of biocomposites from hem and hemp-linen in the form of mat from. All the samples were prepared using hand layup technique. Fabricated specimens will be subjected to various mechanical characterizations. It is expected that the present class of fabricated biocomposites will be used for wide engineering applications.

Apurv Upadhyay, Swabhi Dinesh Bajpai, Vijay Chaudhary, Sumit Gupta, Pallav Gupta
Al 6063 Hybrid Metal Matrix Reinforced Composites with TiC Nanoparticles and NEEM Leaf Ash Using Stir Casting Method for Bicycle Frame

Aluminium metal matrix composites (AMMCs) are the trustful materials for marine, aerospace, defence, advanced structural, aviation applications and also in automobile vehicles due to its favourable properties. The hybrid metal matrix composites are manufactured using stir casting process, which is the simplest and most convenient form of manufacturing a material. In this present research work, aluminium alloy 6063 has been bolstered with TiC and neem leaf ash. Seven samples have been fabricated sample 1 (Al 6063 hundred%), sample 2 (Al 6063 ninety-five% + TiC 4% + neem ash 1%), sample 3 (Al 6063 ninety-six and half % + TiC 2% + neem leaf ash 1.5%), sample 4 (Al 6063 ninety-three and half % + TiC 6% + neem leaf ash half%), sample 5 (Al 6063 ninety-seven and half % + TiC 2% + neem leaf ash half %), sample 6 (Al 6063 ninety-five and half % + TiC 4% + neem leaf ash half %) and sample 7 (Al 6063 ninety-three% + TiC 6% + neem leaf ash 1%). After manufacturing these samples, the hardness test, strength and fatigue test have been conducted. Optimal combination of TiC and neem leaf ash particles in the Al matrix is improving mechanical properties as per the desire for bicycle frame.

Umesh Kumar Vates, Nirav Khattar, Rohit Kumar, Ansh Bhardwaj, Bhupendra Prakash Sharma, Nand Jee Kanu, Eva Gupta, Gyanendra Kumar Singh, Sivaraos Subramanian
Microwave Sintering of Aluminum Composite

Microwave heating has a long history in the industry, most notably in the food processing industry. Furthermore, it is used in the processing of organic and inorganic materials. This technology is increasingly being used in the manufacture of sintered composite materials. In this paper, the properties of aluminum alloy powders—microwave sintering at a temperature of 5500 C (Al–SiC–B4C)—are investigated. The influence of various Al, SiC, and B4C compositions’ mechanical and physical properties are also investigated. It is observed that as apparent density increases, the tendency to shrink during sintering appears to decrease. Boron carbide has a greater tap density (93%) than silicon carbide (90%), which is greater than the tap density of aluminum. The microhardness of the metal matrix composite increased linearly with increasing boron carbide content.

Vishal Naranje, Sachin Salunkhe, Vinod Kumar Shukla, Purushottam Sharmad
Analysis of Energy-Efficient Copper Mining Processes Using Solar Energy: A Review

The copper mineral processing sector faces challenging circumstances due to rising demand, volatile cost of energy, declining grade ore that lead to higher resources usage, and greater public awareness of the GHG emission. In this paper, state of solar technology now is describe. It explains how solar thermal and solar photovoltaic technology are used in copper mining processes to provide electricity and heat. While solar thermal technologies can be used to provide electricity, heat, in copper extraction PV technologies can be used to generate energy for crushing and grinding machines and electrolysis. The research also takes a more comprehensive look at the usable applications of these techs in the management and development of novel sun energy in copper extraction. The researchers came to the conclusion that integrating sun energy into copper extraction processes can be done in a number of practical ways. The major objective of the article is to advance knowledge of sun energy technology and its use in copper mining sector so that people can deal with energy and environmental problems more pro-actively and strategically. In this study, current advances in solar energy for the mining sector are discussed.

Prem Nath Suman, Ravindra Kannojiya, Manish Kumar Ojha, Anoop Kumar Shukla
Effect of Notch on Strength and Ductility of a Martensitic Stainless Steel in Tensile Test

Tensile properties characterize the quality of the product and forecast the performance for design purpose. There is no clear evidence that the tensile results obtained from a different type of specimen are comparable or interchangeable. This study investigates the effect of notch on the tensile properties of stainless steel by conducting uniaxial tensile tests on notched and round specimens at room temperature. A flat specimen was also tested to compare the tensile properties of notched and round specimens. The ultimate tensile strength (UTS), while being higher for notched specimen, was found to be consistent with the type of specimens. The tri-axial stress at the notch root was responsible to the increased UTS of the notched specimen. The higher strain hardening in flat specimen attributed to the reduced ductility. The tensile results of flat stainless steel specimen were found to be more consistent with the standard (round smooth) specimen. The formation of dimples on the fractured surfaces identified a ductile type of fracture for all three types of tensile specimens. Local strain hardening and cracking in notched specimen might have resulted in facets on the fractographs.

Jai Singh, S. K. Nath
Effect of Substitution of Fly Ash on the Strength of Geopolymer Concrete

Concrete is most often used construction material for infrastructure, which includes structures such as buildings, bridges, roads, dams, and a variety of other structures. To fulfill the increased demand for constructing infrastructure, worldwide output of ordinary Portland cement (OPC) is increasing. This suggests that concrete will continue to be the most widely used construction material for a long time. Cement production consumes a lot of energy and emits a lot of CO2 into the atmosphere. Another ecologically friendly concrete option is to utilize geopolymer, which is an inorganic alumina silicate polymer created from natural or waste resources such as fly ash, which is high in silicon and aluminum. Geopolymer is an inorganic alumina silicate polymer that may be manufactured from natural resources or waste products such as fly ash. This research looked at how various elements impact the mechanical characteristics of concrete and how the concrete mix behaves. To do this, concrete mixtures were created. There are many factors to consider when designing a geopolymer manufactured from fly ash, including how much cement it contains, how much cement it replaces, and how much activator solution it contains. The testing revealed that utilizing a fly ash-based geopolymer instead of fly ash improved the durability of concrete. Concrete with a 50% replacement ratio is more durable than other forms of concrete. It outperforms other kinds of concrete in terms of splitting tensile strength, compressive strength, and flexural strength.

Arun Kumar Parashar, Prashant Sharma, Neha Sharma
Effect on Vibration Characteristics of Fiber Metal Laminates Reinforced with Jute/glass Fibers

Fiber metal laminate has outperformed aluminum alloys and fiber-reinforced polymer composites due to its superior mechanical characteristics and reduced density. They are commonly employed in aerospace applications. This paper investigates the damping capacities of fiber metal laminates, including stainless steel, glass fiber, and jute ply, as well as their virgin counterparts. The hand layup method is used to create laminates with eleven plies, which are subsequently compression molded. The plies are held together by epoxy adhesive. Tensile strength, modulus, and damping properties of composite laminates are all tested. The damping ratio and modal frequencies are also determined using experimental modal analysis. The influence of hybridization is investigated for modal and damping parameters obtained from damping experiments under fixed-free boundary conditions. The results of the experiments show that as the free length increases, the modal frequency decreases. The bigger the number of jute pies at the extreme ends, the better the damping properties. These compositions have a greater damping ratio as compared to other configurations.

Abhijeet Pidge, Aniket Salve, Ashok Mache, Aparna Kulkarni, Yashwant Munde
Human–Computer Interaction: Comparison of Different Contributions Based on Opinion and Survey

Human–computer interaction (HCI) has a long and contentious history of “technology.” The academic and consistent status of HCI is regularly called into question, resulting in hollow rhetoric. In the 1970s, it grew quickly from research laboratories, coinciding with the term of the Decennial conferences. Since its inception, there have been concerns regarding his standing as a normal academic object, on which many of them have concentrated their attention. In this paper, a comparative study was conducted between the main parameters of human–computer interaction, which are analytical and theoretical contribution. Three types of discoveries are described here: the first is conceptual, the second is operational, and the third is analytical. HCI is widely recognised as an interdisciplinary study topic. It takes years and years for new types of knowledge and information to arise, integrate, and stabilise in HCI. Several sorts of study findings have evolved over time, and the gaps in this research were identified using opinion datasets and survey contributions. This makes it easy to comprehend how much human–computer interaction is feasible in real time.

Krishnakant Dixit, Kanchan Yadav
Framework and Challenges for Mobile Satellite System

In satellite communications, as in other businesses, the demand for broadband has increased. Satellites carry global client information, including satellite TV, radio, and the Internet, via spacecraft. Satellite communication also provides global speech delivery. They are also vital for the recovery of natural disasters and other emergencies, as communications following natural disasters are crucial. While some spacecrafts are used primarily for data delivery, all spacecraft require communications systems. For example, remote satellites may collect environmental data, but both the data gathered and the satellites’ locations are unknown. The limited storage capacity on board necessitates a high-speed data connection in order to prevent data loss when collecting massive amounts of information. The use of satellites to communicate with others, such as (interplanetary) space, necessitates the creation of new algorithms and protocols for each network tier; satellite communication is constrained by the relatively narrow bandwidth and high transmission power required for satellite transmission. The rising demand for high-speed data impacts the whole telecoms and satellite communications industry. Continuing demand growth and dynamically shifting markets are the key drivers of satellite communication trends.

Reeya Agrawal, Aditi Saxena
A Short Review on the Development of Rare Earths Containing Magnesium Alloys for Biomedical Applications

Development of Mg-based degradable implants for several medical applications is an active research field in biomedical engineering. Owing to its biocompatibility, degradability, and non-toxic nature, Mg has gained tremendous attention among material engineers across the globe to use as a potential candidate for manufacturing medical implants. In spite of its promising properties, degradation control is an important area of research to tailor Mg as promising implant material. Alloying of any metal significantly alters its bulk properties and performance during the application. Several Mg alloys were developed for biomedical applications. Among them, rare earths (RE) containing Mg alloys occupy a prominent place. Different RE elements have been used to improve several properties of Mg. The objective of the current review is to present a brief summary of the developments in Mg–RE alloys targeted for biodegradable medical applications. The role of these alloying elements in enhancing the essential bulk properties required for medical applications is presented. The promising future perspectives and challenges involved in developing Mg-RE alloys for medical applications are also briefly discussed.

Voleti Sri Sai Harsha Vardhan, Ambuj Sharma, Ravikumar Dumpala, Ratna Sunil Buradagunta
Design and Simulation for Brake Pedal of Aluminium Alloy

A brake pedal is a significant pedal after the acceleration pedal as it is used in controlling the vehicle’s speed. An optimized brake pedal is designed to improve the design and other parameters. FEA analysis shows that several test cycles are performed very well. In this paper, an analysis of the design of the brake pedal of a vehicle and testing the strength of the brake pedal are performed and tested according to the criterion. Brake pedal models are designed and constructed using SolidWorks 2018 software. Aluminum alloy is selected as the material for analysis. It is concluded that aluminum is good for the vehicle brake pedal at the beginning of the test. The test is performed on the pedal physical as well as internal buildup characteristics in the material as well as in the design. This study reveals more strength and durability in design with material placed at the required location.

Charan Singh, Utkarsh Jain, Rishabh Singh, Brahma Nand Agrawal
Recent Advancements and Challenges of Abrasive Jet Machining: A Review

Advanced processing methods such as abrasive jet machining can perform various processing such as deburring, polishing, and cutting, and can process even minute dimensions effectively and efficiently. This research paper provides a comprehensive overview of the work done in this area and highlights the complex analysis that has been done to date. This paper provides an overview of the latest technology used in this machining and also discusses the issues related to machining. The review also highlights different materials and methods used under different conditions. Various optimization techniques to improve material removal rate (MRR) and improve kerf width and surface finish are also discussed. This review paper may represent current research challenges and also foresee the development of scopes in this area of advance machining.

Bhaskar Chandra Kandpal, S. P. Singh, Nitin Johri, Khalid Nafees, Ajay Singh Raghav, Arshad, Amit Gupta
Optical, Thermal, and Mechanical Properties of Scheelite Molybdate and Tungstate Materials Using Atomistic Simulations

Solid-state Raman-active materials are instrumental in the development of advanced eye-safe lasers, laser guide stars, remote sensing, and medical diagnosis and treatment. Present work focuses on studying the properties of Scheelite crystal structures of BaWO4, CaWO4, BaMoO4, and CaMoO4 using atomistic simulations, to evaluate their suitability as Raman-active materials. Properties at zero external hydrostatic pressure such as band gap, dielectric function, refractive index, and thermal conductivity were studied using plane-wave density functional theory. Mechanical properties such as elastic constants, bulk modulus, shear modulus, young’s modulus, Debye temperature, average sound velocity, and anisotropy index were also calculated. The calculated properties were in close correspondence with the available experimental and theoretical literature values. A good Raman-active material should possess high thermal conductivity, good absorption in visible and near-infrared region, and low micro-hardness. Among the four crystals studied, CaWO4 showed higher thermal conductivity and lowest hardness (more flexible and therefore easy to process) and highest fracture toughness. Further, CaMoO4 showed highest refractive index indicating its suitability for optoelectronic applications to develop transparent/anti-reflective materials. Analysis of elastic constants and various mechanical properties infer that the barium based materials and specifically tungstate material is more ductile. Barium-based crystals showed superior anisotropy compared to calcium based crystals. Young’s modulus values infer that BaMoO4 is more ductile than BaWO4, CaMoO4, and CaWO4. Among the four crystals studied, CaWO4 showed highest thermal conductivity followed by CaMoO4. Overall comparison indicates the suitability of calcium-based molybdate and tungstate as Raman-active materials which offer more ease of processing.

Yamini Sudha Sistla, Ramesh Gupta Burela, Ankit Gupta, Nabila Tabassum
A Comprehensive Review on Aluminium MMC Fabricated by Liquid-Phase Fabrication Methodologies

The need for advanced materials has always been desirable in all kinds of industries such as mechanical, aeronautical, civil and automobile. Almost all industries are looking for low-cost materials with better properties. These are the main components that attract every engineer or industrialist to produce an advanced and new material. This requirement may be attained in the form of composite materials. The better mechanical properties and light weight of composite mainly depend upon fabrication method and reinforcement used in the composite. This paper attempts to review the single and hybrid reinforcement used to prepare aluminium MMCs and liquid-phase fabrication method. Various liquid-phase fabrication methods were discussed which is used for the production of Al MMCs but especially put effort on stir casting technique.

Dinesh Chawla, Manoj Nayak, Pallav Gupta
Prediction of Effective Elastic Properties of PEEK-CF Composites Subjected to Thermomechanical Loading

The micromechanics approach to studying the effect of filler’s mass fraction on the effective elastic properties of the composites is investigated. Poly(ether ether ketone) (PEEK) as matrix and carbon fiber as fillers are used due to excellent nucleation density compared to pure PEEK. The scheme used depends on the single inclusion problem which effectively predicted the mechanical properties considering the orientation, aspect ratio, and mass fraction of the fillers. The main outcome of the study is the moduli variation for 10, 20, and 30% mass fraction reinforced PEEK composites subjected to mechanical and thermal loading simultaneously. It has been observed that above 63 °C, the composite’s elastic properties decrease by 30% mass fraction of CF in PEEK. The maximum failure strength of the composite is 105.32 MPa obtained for a 30% mass fraction of CF in PEEK. In general, the moduli and strength of the composites decrease with the increase in temperature due to the structural change in the polymer.

Brahma Nand Agrawal, Pawan Kumar Singh Nain, Saksham Bisht, Aniket Srivastava
Mori–Tanaka Modeling of Polymer Nanocomposites: Interface Effect on the Moduli

Polymer nanocomposites have gained popularity due to ease in manufacturing and enhanced elastic properties and strength compared to polymers. The main focus of the study is on the determination of elastic properties of polymer nanocomposites reinforced with 1, 2, 5, and 10% volume fractions of nanoparticles. The scheme used for the study is Mori–Tanaka. It is established on Eshelby’s sole filler problem and effectively determines the elastic properties of the nanocomposites. The cases studied in this paper are no, soft, medium-stiff, and stiff interface of 0.6 nm thickness for the determination of Young’s modulus, Poisson’s ratio, and Shear modulus of the nanocomposites. It has been observed that a 27% increment in the moduli with a stiff interface has been achieved compared to no interface case. The medium-stiff interface has a positive effect on the elastic properties. A 10% and 3% increase in E and G, respectively, have been observed compared to no interface case. A remarkable increment of 27% for both E and G has been observed for the stiff interface case compared to the no interface case.

Brahma Nand Agrawal, Pawan Kumar Singh Nain, Abhishek Patwal, Akash Abrol
Static Engine Test on CTN Model Rocket Engine with 1/2 A6-2 Propellant

Solid propellant rocket engines are characterized as the basic model for rocket propellants. They are highly utilized in the industry due to their simplicity and high combustible range. Even though solid rocket engines are widely used, the concept still appears to be lacking for some engineers, hence developing a working prototype of a unique design is proposed. This will help study the advantages and prove the concept of solid rocket engines through visual tests. This paper focuses on the construction of a mini-solid fuel rocket engine, stand test, and the conduction of static test to evaluate the prototype performance and thrust production.

Sarath Raj, Nour Alaa Elsonbaty, Sathiyagayathiri Ramamoorthy
Mordernistic Aspects of MXenes and Its Applications

Since last decades identification of Ti3C2, the collection of 2D transition metal carbides, carbonitrides, and nitrides has become fastly grown topic. MXenes are two-dimensional (2D) materials that are synthesized from MAX different stages. The numerous implications of 2D MXenes in nanomedicine, spintronics, microwave absorption, and energy storage devices have been promoted by their exfoliation. Scientists at Drexel University were the first to characterize a monolayer from a M phase of Ti3C2. Distinctive features of MXenes include strong rigidity and high electrical conductivity. In terms of crystallographic and structural complexity, the MAX phase family, and its descendant, the use of MXenes and related nanostructured materials in (photo) electrocatalysis and traditional chemical processing is highlighted in recent conceptual advancements. MXenes are expanding rapidly. Day-by-day rising interest and advancement of MXene-based research and technology in the area of MXenes applications like catalysts, ion batteries, gas storage medium, and sensors are continuously attracting the researchers to have a assembled review studies for its structure activity prospects. This review paper will definitely serve the path for the development of a new generation of MXene-based a compound with exciting potential. In this paper, we have discussed the synthesis, composition, and characteristics of MXenes, and their different applications with highlighting the challenges to look forward for research.

Swarnima Sharma, Surbhi Sharma
Synthesis of Five-Membered Heterocyclic Compounds and Their Anticorrosive, Thermal, Electron Transfer, and Biological Properties

In organic science, heterocyclic compounds are considered the biggest family of organic chemicals. The role of heterocyclic compounds in our daily lives is critical. In medicinal chemistry and agrochemicals, it has a wide range of uses. Developers, corrosion inhibitors, sanitizers, copolymers, antioxidants, and dyestuff all use it. The importance of an efficient process for synthesizing novel heterocycle moiety cannot be overstated. According to a literature review, more than 85–95% of novel medications contain heterocycles, providing valuable scientific insight into the biological system. I concentrated on five-membered heterocyclic compounds in my review. The current article review discusses the extremely active heterocyclic compounds which demonstrate antifungal, anti-inflammatory, antibacterial, antidepressant, antiulcer, anthelmintic, anticorrosive, thermal, and electron-transfer properties.

Archana Thakur, Anam Ansari
Optimization of Drilling Operation Using Work Material Al 7075 Alloy Reinforced with Boron Carbide

In the present study, a metal matrix composite containing Al 7075 alloy and boron carbide (6% wt) was fabricated with the help of stir casting method. After the fabrication of the composite, the drilling operation was done on the conventional radial drilling machine, manufactured by Atlas Engineering Co. London. The dimensions of the work piece samples were 75 mm × 75 mm × 25 mm. The drill sizes were 5, 6.5, and 8.5 mm in diameter. The drills bits used were of HSS manufactured by Miranda Gold (India). Feed rate, speed, and drill bit diameter were chosen as process parameters. For the design of experiment, Taguchi's L9 orthogonal array was used with three level of factor. For finding out the optimum level of process parameters for multi-performance characteristics that is MRR and surface roughness, grey relational analysis was used. After optimization, it was found that the largest values of grey relational grade for feed rate, spindle speed, and drill diameter are at the level 740 rpm, 0.015 in/rev, and 5 mm, respectively. Hence, these are the recommended levels of process parameter when better MRR and optimum surface roughness have to be obtained simultaneously.

Sohail Akhtar, Imtiaz Ali Khan
Critical Analysis of Manufacturing of Manganese Steel Liners Used in Crushing and Mining Sector for Improved Performance

The scope of this paper is to understand the manufacturing process of austenitic manganese steel (AMS) casting liners specifically for cone crushers (consumable liners) used in the mining sector. During review work, an orthodox manganese steel manufacturing process was studied along with the heat treatment process's silent parameters, which directly affect the austenitic manganese steel wear properties and internal cast integrity. Also, the effect of the heat treatment of Austenitic manganese steel was discussed, which helps to improve austenitic microstructure with minimal carbides precipitation on grain boundaries. Various other silent factors in the heat treatment process, like effective quenching by controlling quenching time lag, medium temperature control, parts stacking gap, churning of the tank medium, etc., were also discussed and controlled during the heat treatment process. This helped to increase the toughness values significantly from 27 to 188 J, i.e., up to 7 times approximately. Also, there is a marginal increase in hardness from 209 to 237 BHN, around 15%, which helps sustain the impacts during application and improves wear life without failures. This was concluded that the manufacturing process of crusher liners followed by an adequate heat treatment process produces an improved austenitic microstructure with improved mechanical properties, resulting in higher wear life of consumable crusher liners in mining and crushing applications.

Rahul Nagar, Anant Prakash Agrawal, Ajay Kumar, Shyam Lal
Productivity Improvement Using Systematic Layout Planning: A Cement Refractory Case Study

The present study relates to the cement refractory layout configuration. The objective of the proposed research is to boost the inventory space and reduce the unnecessary travel of the material by applying the systematic layout planning approach to understand the movement of the material and the utilization of the region occupied by the machinery. The proposed layouts aim to boost the inventory area and reduce the unnecessary travel of the material by implementing the proposed configuration developed by analyzing the activity areas, the outline process chart, process flow diagram, affinity analysis diagram and space relationship diagram across 8 departments. Analyzing these data, an alternative configuration was developed, which reduced the transport distance significantly between the two departments and spread up the inventory space, allowing a better storage and travel area.

Ramkrishna Bharsakade, Atharwa Kharkar, Himanshu Kurzekar, Arnav Hardas, Ameya Panshikar, Nilay Diwan
Study on the Flexural Strength of Glass Fiber-Reinforced M20 Grade Self-Healing Concrete Using a Novel Technique Microbial-Induced Calcite Precipitation

The objective of this study is to quantify the influence of glass fiber on flexural strength of the M20 grade self-healing concrete by using a novel technique microbial-induced calcite precipitation. Two groups consisting of 18 samples in each were prepared for collection of data. One is prepared without the addition of glass fiber and the other is with the addition of glass fiber. Bacteria bacillus subtilis was prepared in the bioinformatics laboratory using a strain brought from Hi media laboratories. The data were analyzed using statistical software called SPSS. The mean flexural strength of bacterial concrete without fiber was 7.944 N/mm2 and the mean flexural strength of glass fiber-reinforced concrete was 8.666 N/mm2. The significance of the events was 0.028 (p < 0.05). Glass fiber-reinforced M20 grade self-healing concrete had more flexural strength compared to conventional M20 grade self-healing concrete which were made by using a novel technique microbial-induced calcite precipitation. The percentage increase in strength of glass fiber-reinforced M20 grade self-healing concrete was 9%.

S. Hemanth, B. Ramesh
Spectroscopic Study of Eco-Friendly Slow Release Micronutrient Delivery System

For optimum plant growth, micronutrients are just as important as macronutrients. These micronutrients are present in the soil naturally, but because they are not phytoavailable, a way must be found to make them accessible to plants from the outside. The highest quantity of nutrients supplied directly to plant systems leaches off, causing soil toxicity rather than fortification, which is another significant difficulty. Therefore, one of the main considerations is the introduction of a carrier material to improve the availability of the additional nutritional molecules. To carry the copper micronutrients for a slow release study, nano-zeolite was used in the design of the current study as a support material. FT-IR spectroscopy is used to establish the synthesis of nano-zeolite (NZ) and the loaded nutrient NZ (LNZ). And using UV–Visible spectroscopy as a foundation, the gradual release study of the nutrient particles is created. As a result, the plant will have access to the doped nutrients for the entirety of the crop culture time, which is great for promoting germination, development, flowering, and fruiting. The findings allow for the safe use of produced LNZ materials as an environmentally friendly fertilizer.

Manpreet Kaur Takkar, Khushbu Gumber
Mechanical Behavior of Friction Stir Welded Al-Alloy AA6063 + 5%SiCp

Friction stir welding of Al-alloy AA6063-5%SiCp was carried out by applying various permutations of tool rotating velocity and tool traverse velocity using vertical milling machine (VMC). FSW is termed as the green joining technique of the present and future generation. In this research work, the welded joints have been obtained by altering input variables at two-level variation ranges. Tool rotating velocity, tool traverse speed and dwell time were the input variables in this experimental research. Sound weld joints thus obtained were tested for various mechanical properties, namely hardness, tensile strength, etc., during welding process. The results showed that there is a sharp increase in the hardness and tensile strength of the SiC particulate reinforced AA6063. The obtained results were complied with graphs and optical images to analyze the exact behavior.

Pardeep Gahlot, Narinder Kaushik, Naveen Hooda, Rajkumar Duhan, Rakesh Kumar Phanden
3D Printing of Phase Change Materials: Issues and Challenges

Latent heat storage offers most preferable technique for thermal energy storage because of invariable working temperature and high energy storage density. Latent heat storage systems use phase change materials (PCM) for energy storage. These systems suffer from low thermal conductivity of PCM which elongates charging and discharging time. A lot of research is being carried out to enhance the performance of PCM by using high thermal conductivity additives and porous media to enhance thermal conductivity, using cascaded or multistage latent heat technique to ameliorate heat transfer uniformity, using encapsulated PCM and finned structure to increase heat transfer surface. This paper reviews fabrication methods of PCM-based system using 3D printing technique. In addition, the research gaps in this field are also discussed and some recommendation for further research are also proposed.

Deepak Kumar Yadav, Basant Singh Sikarwar, Arvind Kumar Gupta, Rajeev Kumar Singh
Challenges and Possibilities in the Welding of Advanced High-Strength Steels

In numerous industrial fields, there is a demand for the application of high strength steels (HSS). Steel producers have an increased attention to develop new generation of HSS with good weldability properties. The users of HSS in welded structures generally face with the problem of cold cracking, significant deterioration of mechanical properties in the heat-affected zone and the arising questions related to the mismatch ratio between the base and the filler material. Gas metal arc welding (GMAW) is the commonly used technology for HSS, although welding equipment with the function of advanced pulsed process variants is recommended to achieve minimized heat input and acceptable penetration at the same time. Beam welding processes can offer new opportunities with the combination of preheating, welding and post-weld heat treatment by the same heat source. Present paper provides a brief overview about weldability challenges and the advanced technological solutions regarding HSS. A strong relation can be identified between the steel processing route, weldability and the recommended welding technology.

Marcell Gáspár, Raghawendra P. S. Sisodia
CNT-Reinforced Metal Matrix Composites: A Review

Materials have been an important part of human life from its very existence. Especially metals have played a vital role in the development of human kind. From tools to utensils, metals have been used extensively. In today’s scenario, pure metals and metal alloys have become a bit less popular as compared to metal matrix composites (MMCs). This has happened because of the extraordinary properties possessed by MMCs. Properties such as high compressive and yield strength, good creep and wear resistance, good fatigue and corrosion resistance, ability to withstand high temperatures, high thermal conductivity and low coefficient of thermal expansion make MMCs suitable for most demanding applications such as aerospace, defense, surgical, automobile, structural and thermal management applications. MMCs have gained popularity over the years due to above-mentioned properties which distinguish them from pure metals and traditional alloys which possess very few of them taken together. There are several ways for the synthesis of MMCs such as sintering, powder metallurgy (P/M), squeeze casting, liquid infiltration and stir casting. This paper presents the latest developments in the field of metal matrix composites reinforced with carbon nanotubes (CNTs) including synthesis and applications. Some of the classical papers from the past have also been included to present a comprehensive picture as far as microstructure and alignment of CNT within the metal matrix is concerned. The paper indicates toward the challenges in the processing of CNT-reinforced MMCs and also points toward the potential future applications of these materials in the future.

Garvit Kumar, Anirudh Sharma, Bhavish Sharma, Prateek Mittal
Nonlinear Static and Dynamic Analysis of Composite Riser

The dynamic response of composite production risers w.r.t periodic and erratic waves was derived in the time domain. The harmonic superposition method is used to model the time series of sea surface elevation, water particle kinematics, and vessel top motion in the context of random sea states. Instantaneous updates to the stiffness matrix account for the intrinsically unpredictable variations in axial tension. Time domain examination of the riser structure takes into account some significant nonlinearities. For a range of tides typical of the deep offshore fields in the Indian Ocean, the bending stresses in the presence of variable axial tension are calculated. Obtaining power spectral density functions helps researchers look for signs of resonance. As a result of their high strength-to-weight ratio, composite risers are highlighted in the research as a potential means of increasing safety margins. In order to provide input for the probabilistic evaluation of riser safety in a harsh ocean environment, we extract the statistical features of the reaction, which are of stochastic nature.

Manander Singh, Rajeev Kumar Singh, Sanatan Ratna, Shubham Sharma, Priyank Srivastava
Metadata
Title
Advances in Engineering Materials
Editors
R. K. Tyagi
Pallav Gupta
Prosenjit Das
Rajiv Prakash
Copyright Year
2024
Publisher
Springer Nature Singapore
Electronic ISBN
978-981-9947-58-4
Print ISBN
978-981-9947-57-7
DOI
https://doi.org/10.1007/978-981-99-4758-4

Premium Partners