Skip to main content
Top
Published in: Mechanics of Composite Materials 3/2022

18-07-2022

Advances in Natural-Fiber-Reinforced Composites: A Topical Review

Authors: H. Prajapati, A. Tevatia, A. Dixit

Published in: Mechanics of Composite Materials | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A rapid growth in the research and employment of natural-fiber composites (NFCs) has been observed in the last years. This is explained by their many advantages, such as the biodegradability, eco-friendliness, a relatively low cost, and good mechanical properties. Despite these advantages, they also possess some undesirable features, such as difficulties in processing, high fiber moisture absorption, low impact strength, low durability, poor fire resistance, and poor compatibility between fibers and matrix. Much effort has been applied to minimizing these issues in order to extend the capabilities and applications of this group of materials. In an attempt to provide a better insight into NFCs, an up-to-date review of their manufacturing routes, different applications, and mechanical performance is very required. This review aims to address the above-mentioned issues challenges encountered when dealing with such materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F. M. Al-Oqla and M. S. Salit, Materials Selection for Natural-Fiber Composites, Woodhead Publish, Cambridge, (2017).CrossRef F. M. Al-Oqla and M. S. Salit, Materials Selection for Natural-Fiber Composites, Woodhead Publish, Cambridge, (2017).CrossRef
2.
go back to reference J. K. Sameni, S. H. Ahmad, and S. Zakaria, “Effect of MAPE on the mechanical properties of rubber wood fiber/thermoplastic natural rubber composites,” Adv. Polym. Technol., 23, No. 1, 18-23 (2004).CrossRef J. K. Sameni, S. H. Ahmad, and S. Zakaria, “Effect of MAPE on the mechanical properties of rubber wood fiber/thermoplastic natural rubber composites,” Adv. Polym. Technol., 23, No. 1, 18-23 (2004).CrossRef
3.
go back to reference D. D. Stokke, Q. Wu, and G. Han, Wood and Natural-Fiber Composites, John Wiley & Sons (2013). D. D. Stokke, Q. Wu, and G. Han, Wood and Natural-Fiber Composites, John Wiley & Sons (2013).
4.
go back to reference V. M. Murty and S. K. De, “Effect of particulate fillers on short jute fiber-reinforced natural rubber composites,” J. Appl. Polym. Sci., 27, No. 12, 4611-4622 (1982).CrossRef V. M. Murty and S. K. De, “Effect of particulate fillers on short jute fiber-reinforced natural rubber composites,” J. Appl. Polym. Sci., 27, No. 12, 4611-4622 (1982).CrossRef
5.
go back to reference K. T. Lau, K. H. Y. Cheung, and D. Hui, “Natural-fiber composites,” Compos. Part B Eng., 40, No. 7, 591-593 (2009).CrossRef K. T. Lau, K. H. Y. Cheung, and D. Hui, “Natural-fiber composites,” Compos. Part B Eng., 40, No. 7, 591-593 (2009).CrossRef
6.
go back to reference H. N. Yu, S. S. Kim, I. U. Hwang, and D. G. Lee, “Application of natural-fiber-reinforced composites to trenchless rehabilitation of underground pipes,” Compos. Struct., 86, Nos. 1-3, 285-290 (2008).CrossRef H. N. Yu, S. S. Kim, I. U. Hwang, and D. G. Lee, “Application of natural-fiber-reinforced composites to trenchless rehabilitation of underground pipes,” Compos. Struct., 86, Nos. 1-3, 285-290 (2008).CrossRef
7.
go back to reference O. B. Gutiérrez-acosta, S. Arriaga, V. A. Escobar-barrios, S. Casas-flores, and A. Almendarez-camarillo, “Performance of innovative PU-foam and natural fiber-based composites for the biofiltration of a mixture of volatile organic compounds by a fungal biofilm,” J. Hazard. Mater., 201-202, 202-208 (2012).CrossRef O. B. Gutiérrez-acosta, S. Arriaga, V. A. Escobar-barrios, S. Casas-flores, and A. Almendarez-camarillo, “Performance of innovative PU-foam and natural fiber-based composites for the biofiltration of a mixture of volatile organic compounds by a fungal biofilm,” J. Hazard. Mater., 201-202, 202-208 (2012).CrossRef
8.
go back to reference M. Pervaiz and M. M. Sain, “Carbon storage potential in natural-fiber composites,” Resour. Conserv. Recycl., 39, No. 4, 325-340 (2003).CrossRef M. Pervaiz and M. M. Sain, “Carbon storage potential in natural-fiber composites,” Resour. Conserv. Recycl., 39, No. 4, 325-340 (2003).CrossRef
9.
go back to reference J. K. Pandey, S. H. Ahn, C. S. Lee, A. K. Mohanty, and M. Misra, “Recent advances in the application of natural fiber based composites,” Macromol. Mater. Eng., 295, No. 11, 975-989 (2010).CrossRef J. K. Pandey, S. H. Ahn, C. S. Lee, A. K. Mohanty, and M. Misra, “Recent advances in the application of natural fiber based composites,” Macromol. Mater. Eng., 295, No. 11, 975-989 (2010).CrossRef
10.
go back to reference A. Gholampour and T. Ozbakkaloglu, “A review of natural-fiber composites: properties, modification and processing techniques, characterization, applications,” J. Mater. Sci., 55, No. 3, 829¾892 (2020).CrossRef A. Gholampour and T. Ozbakkaloglu, “A review of natural-fiber composites: properties, modification and processing techniques, characterization, applications,” J. Mater. Sci., 55, No. 3, 829¾892 (2020).CrossRef
11.
go back to reference R. A. Shanks, A. Hodzic, and S. Wong, “Thermoplastic biopolyester natural-fiber composites,” J. Appl. Polym. Sci., 91, No. 4, 2114-2121 (2004).CrossRef R. A. Shanks, A. Hodzic, and S. Wong, “Thermoplastic biopolyester natural-fiber composites,” J. Appl. Polym. Sci., 91, No. 4, 2114-2121 (2004).CrossRef
12.
go back to reference H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, “A review on the tensile properties of natural-fiber-reinforced polymer composites,” Compos. Part B Eng., 42, No. 4, 856-873 (2011).CrossRef H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, “A review on the tensile properties of natural-fiber-reinforced polymer composites,” Compos. Part B Eng., 42, No. 4, 856-873 (2011).CrossRef
13.
go back to reference E. R. Coats, F. J. Loge, M. P. Wolcott, K. Englund, and A. G. McDonald, “Production of natural-fiber-reinforced thermoplastic composites through the use of polyhydroxybutyrate-rich biomass,” Bioresour. Technol., 99, No. 7, 2680-2686 (2008).CrossRef E. R. Coats, F. J. Loge, M. P. Wolcott, K. Englund, and A. G. McDonald, “Production of natural-fiber-reinforced thermoplastic composites through the use of polyhydroxybutyrate-rich biomass,” Bioresour. Technol., 99, No. 7, 2680-2686 (2008).CrossRef
14.
go back to reference M. García, I. Garmendia, and J. García, “Influence of natural fiber type in eco-composites,” Journal of Applied Polymer Science, 107, No. 5. 2994-3004 (2008).CrossRef M. García, I. Garmendia, and J. García, “Influence of natural fiber type in eco-composites,” Journal of Applied Polymer Science, 107, No. 5. 2994-3004 (2008).CrossRef
15.
go back to reference A. O’Donnell, M. A. Dweib, and R. P. Wool, “Natural-fiber composites with plant oil-based resin,” Compos. Sci. Technol., 64, No. 9, 1135-1145 (2004).CrossRef A. O’Donnell, M. A. Dweib, and R. P. Wool, “Natural-fiber composites with plant oil-based resin,” Compos. Sci. Technol., 64, No. 9, 1135-1145 (2004).CrossRef
16.
go back to reference D. Ray, “State-of-the-art applications of natural-fiber composites in the industry,” In: Natural Fiber Composites, Press-Taylor&Francis Group (2015). D. Ray, “State-of-the-art applications of natural-fiber composites in the industry,” In: Natural Fiber Composites, Press-Taylor&Francis Group (2015).
17.
go back to reference M. Pervaiz and M. M. Sain, “Sheet-molded polyolefin natural-fiber composites for automotive applications,” Macromol. Mater. Eng., 288, No. 7, 553-557 (2003).CrossRef M. Pervaiz and M. M. Sain, “Sheet-molded polyolefin natural-fiber composites for automotive applications,” Macromol. Mater. Eng., 288, No. 7, 553-557 (2003).CrossRef
18.
go back to reference M. R. Mansor and S. M. Sapuan, Concurrent Conceptual Design and Materials Selection of Natural-fiber composite Products, Springer (2018).CrossRef M. R. Mansor and S. M. Sapuan, Concurrent Conceptual Design and Materials Selection of Natural-fiber composite Products, Springer (2018).CrossRef
19.
go back to reference T. Tan, S. F. Santos, H. Savastano, and W. O. Soboyejo, “Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites,” J. Mater. Sci., 47, No. 6, 2864-2874 (2012).CrossRef T. Tan, S. F. Santos, H. Savastano, and W. O. Soboyejo, “Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites,” J. Mater. Sci., 47, No. 6, 2864-2874 (2012).CrossRef
20.
go back to reference K. Adekunle, S. Cho, R. Ketzscher, and M. Skrifvars, “Mechanical properties of natural fiber hybrid composites based on renewable thermoset resins derived from soybean oil , for use in technical applications,” Appl. Polymer Sci., 124, No. 6, 4530¾4541 (2011). K. Adekunle, S. Cho, R. Ketzscher, and M. Skrifvars, “Mechanical properties of natural fiber hybrid composites based on renewable thermoset resins derived from soybean oil , for use in technical applications,” Appl. Polymer Sci., 124, No. 6, 4530¾4541 (2011).
21.
go back to reference D. F. Caulfield, D. Feng, S. Prabawa, R. A. Young, and A. R. Sanadi, “Interphase effects on the mechanical and physical aspects of natural-fiber composites,” Angew. Makromol. Chemie, 272, No. 4757, 57-64 (1999).CrossRef D. F. Caulfield, D. Feng, S. Prabawa, R. A. Young, and A. R. Sanadi, “Interphase effects on the mechanical and physical aspects of natural-fiber composites,” Angew. Makromol. Chemie, 272, No. 4757, 57-64 (1999).CrossRef
22.
go back to reference C. Alves et al., “Ecodesign of automotive components making use of natural jute fiber composites,” J. Clean. Prod., 18, No. 4, 313-327 (2010).CrossRef C. Alves et al., “Ecodesign of automotive components making use of natural jute fiber composites,” J. Clean. Prod., 18, No. 4, 313-327 (2010).CrossRef
23.
go back to reference M. Z. Rong, M. Q. Zhang, Y. Liu, G. C. Yang, and H. M. Zeng, “The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites,” Compos. Sci. Technol., 61, No. 10, 1437-1447 (2001).CrossRef M. Z. Rong, M. Q. Zhang, Y. Liu, G. C. Yang, and H. M. Zeng, “The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites,” Compos. Sci. Technol., 61, No. 10, 1437-1447 (2001).CrossRef
24.
go back to reference P. T. Martone et al., “Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture,” Curr. Biol., 19, No. 2, 169-175 (2009).CrossRef P. T. Martone et al., “Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture,” Curr. Biol., 19, No. 2, 169-175 (2009).CrossRef
25.
go back to reference G. Brunner, “Processing of biomass with hydrothermal and supercritical water,” Ch. 8, In: Hydrothermal and Supercritical Water Processes, Vol. 5, Elsevier, 395-509 (2014). G. Brunner, “Processing of biomass with hydrothermal and supercritical water,” Ch. 8, In: Hydrothermal and Supercritical Water Processes, Vol. 5, Elsevier, 395-509 (2014).
26.
go back to reference C. Baley, A. Le Duigou, A. Bourmaud, and P. Davies, “Influence of drying on the mechanical behavior of flax fibres and their unidirectional composites,” Compos. Part A Appl. Sci. Manuf., 43, No. 8, 1226-1233 (2012).CrossRef C. Baley, A. Le Duigou, A. Bourmaud, and P. Davies, “Influence of drying on the mechanical behavior of flax fibres and their unidirectional composites,” Compos. Part A Appl. Sci. Manuf., 43, No. 8, 1226-1233 (2012).CrossRef
27.
go back to reference K. Charlet, C. Baley, C. Morvan, J. P. Jernot, M. Gomina, and J. Bréard, “Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites,” Compos. Part A Appl. Sci. Manuf., 38, No. 8, 1912-1921 (2007).CrossRef K. Charlet, C. Baley, C. Morvan, J. P. Jernot, M. Gomina, and J. Bréard, “Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites,” Compos. Part A Appl. Sci. Manuf., 38, No. 8, 1912-1921 (2007).CrossRef
28.
go back to reference K. Charlet, S. Eve, J. P. Jernot, M. Gomina, and J. Breard, “Tensile deformation of a flax fiber,” Procedia Eng., 1, No. 1, 233-236 (2009).CrossRef K. Charlet, S. Eve, J. P. Jernot, M. Gomina, and J. Breard, “Tensile deformation of a flax fiber,” Procedia Eng., 1, No. 1, 233-236 (2009).CrossRef
29.
go back to reference H. L. Bos and A. M. Donald, “In situ ESEM study of the deformation of elementary flax fibres,” J. Mater. Sci., 34, No. 13, 3029-3034 (1999).CrossRef H. L. Bos and A. M. Donald, “In situ ESEM study of the deformation of elementary flax fibres,” J. Mater. Sci., 34, No. 13, 3029-3034 (1999).CrossRef
30.
go back to reference B. Madsen and E. K. Gamstedt, “Wood versus plant fibers: similarities and differences in composite applications,” Adv. Mater. Sci. Eng., Article ID 564346 (2013). B. Madsen and E. K. Gamstedt, “Wood versus plant fibers: similarities and differences in composite applications,” Adv. Mater. Sci. Eng., Article ID 564346 (2013).
31.
go back to reference J. Gassan, A. Chate, and A. K. Bledzki, “Calculation of elastic properties of natural fibers,” J. Mater. Sci., 36, No. 15, 3715-3720 (2001).CrossRef J. Gassan, A. Chate, and A. K. Bledzki, “Calculation of elastic properties of natural fibers,” J. Mater. Sci., 36, No. 15, 3715-3720 (2001).CrossRef
32.
33.
go back to reference L. T. Drzal, Natural Fibers, Biopolymers, and Biocomposites, CRC press (2005). L. T. Drzal, Natural Fibers, Biopolymers, and Biocomposites, CRC press (2005).
34.
go back to reference M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, “Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview,” Compos., Part B, Eng., 43, No. 7, 2883-2892 (2012).CrossRef M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, “Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview,” Compos., Part B, Eng., 43, No. 7, 2883-2892 (2012).CrossRef
35.
go back to reference N. Venkateshwaran and A. Elayaperumal, “Banana fiber reinforced polymer composites — A review,” J. Reinf. Plast. Compos., 29, No. 15, 2387-2396 (2010).CrossRef N. Venkateshwaran and A. Elayaperumal, “Banana fiber reinforced polymer composites — A review,” J. Reinf. Plast. Compos., 29, No. 15, 2387-2396 (2010).CrossRef
36.
go back to reference G. Cristaldi, A. Latteri, G. Recca, and G. Cicala, “Composites based on natural fibre fabrics,” Woven Fabr. Eng., 17, 317-342 (2010). G. Cristaldi, A. Latteri, G. Recca, and G. Cicala, “Composites based on natural fibre fabrics,” Woven Fabr. Eng., 17, 317-342 (2010).
37.
go back to reference M. W. Chai, S. Bickerton, D. Bhattacharyya, and R. Das, “Influence of natural fibre reinforcements on the flammability of bio-derived composite materials,” Compos., Part B, Eng., 43, No. 7, 2867-2874 (2012).CrossRef M. W. Chai, S. Bickerton, D. Bhattacharyya, and R. Das, “Influence of natural fibre reinforcements on the flammability of bio-derived composite materials,” Compos., Part B, Eng., 43, No. 7, 2867-2874 (2012).CrossRef
38.
go back to reference X. Li, L. G. Tabil, and S. Panigrahi, “Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review,” J. Polym. Environ., 15, No. 1, 25-33 (2007).CrossRef X. Li, L. G. Tabil, and S. Panigrahi, “Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review,” J. Polym. Environ., 15, No. 1, 25-33 (2007).CrossRef
39.
go back to reference M. K. Hossain, M. W. Dewan, M. Hosur, and S. Jeelani, “Mechanical performances of surface modified jute fiber reinforced biopol nanophased green composites,” Compos., Part B, Eng., 42, No. 6, 1701-1707 (2011).CrossRef M. K. Hossain, M. W. Dewan, M. Hosur, and S. Jeelani, “Mechanical performances of surface modified jute fiber reinforced biopol nanophased green composites,” Compos., Part B, Eng., 42, No. 6, 1701-1707 (2011).CrossRef
40.
go back to reference D. Rouison, M. Sain, and M. Couturier, “Resin transfer molding of natural-fiber-reinforced composites: Cure simulation,” Compos. Sci. Technol., 64, No. 5, 629-644 (2004).CrossRef D. Rouison, M. Sain, and M. Couturier, “Resin transfer molding of natural-fiber-reinforced composites: Cure simulation,” Compos. Sci. Technol., 64, No. 5, 629-644 (2004).CrossRef
41.
go back to reference M. Jawaid, H. P. S. Abdul Khalil, A. Hassan, R. Dungani, and A. Hadiyane, “Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites,” Compos., Part B, Eng., 45, No. 1, 619-624 (2013).CrossRef M. Jawaid, H. P. S. Abdul Khalil, A. Hassan, R. Dungani, and A. Hadiyane, “Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites,” Compos., Part B, Eng., 45, No. 1, 619-624 (2013).CrossRef
42.
go back to reference W. Thielemans and R. P. Wool, “Kraft lignin as fiber treatment for natural fiber-reinforced composites,” Polym. Compos., 26, No. 5, 695-705 (2005).CrossRef W. Thielemans and R. P. Wool, “Kraft lignin as fiber treatment for natural fiber-reinforced composites,” Polym. Compos., 26, No. 5, 695-705 (2005).CrossRef
43.
go back to reference S. J. Kim, J. B. Moon, G. H. Kim, and C. S. Ha, “Mechanical properties of polypropylene/natural-fiber composites: Comparison of wood fiber and cotton fiber,” Polym. Test., 27, No. 7, 801-806 (2008).CrossRef S. J. Kim, J. B. Moon, G. H. Kim, and C. S. Ha, “Mechanical properties of polypropylene/natural-fiber composites: Comparison of wood fiber and cotton fiber,” Polym. Test., 27, No. 7, 801-806 (2008).CrossRef
44.
go back to reference S. Varghese, B. Kuriakose, and S. Thomas, “Stress relaxation in short sisal-fiber-reinforced natural rubber composites,” J. Appl. Polym. Sci., 53, No. 8, 1051-1060 (1994).CrossRef S. Varghese, B. Kuriakose, and S. Thomas, “Stress relaxation in short sisal-fiber-reinforced natural rubber composites,” J. Appl. Polym. Sci., 53, No. 8, 1051-1060 (1994).CrossRef
45.
go back to reference N. Lopattananon, K. Panawarangkul, K. Sahakaro, and B. Ellis, “Performance of pineapple leaf fiber-natural rubber composites: The effect of fiber surface treatments,” J. Appl. Polym. Sci., 102, No. 2, 1974-1984 (2006).CrossRef N. Lopattananon, K. Panawarangkul, K. Sahakaro, and B. Ellis, “Performance of pineapple leaf fiber-natural rubber composites: The effect of fiber surface treatments,” J. Appl. Polym. Sci., 102, No. 2, 1974-1984 (2006).CrossRef
46.
go back to reference N. M. Barkoula, B. Alcock, N. O. Cabrera, and T. Peijs, “Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene,” Polym. Polym. Compos., 16, No. 2, 101-113 (2008). N. M. Barkoula, B. Alcock, N. O. Cabrera, and T. Peijs, “Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene,” Polym. Polym. Compos., 16, No. 2, 101-113 (2008).
47.
go back to reference A. Dixit, H. S. Mali, and R. K. Misra, “Investigation of the thermomechanical behavior of a 2 × 2 twill weave fabric advanced textile composite,” Mech. Compos. Mater., 51, No. 2, 253-264 (2015).CrossRef A. Dixit, H. S. Mali, and R. K. Misra, “Investigation of the thermomechanical behavior of a 2 × 2 twill weave fabric advanced textile composite,” Mech. Compos. Mater., 51, No. 2, 253-264 (2015).CrossRef
48.
go back to reference S. Shibata, Y. Cao, and I. Fukumoto, “Study of the flexural modulus of natural fiber/polypropylene composites by injection molding,” J. Appl. Polym. Sci., 100, No. 2, 911-917 (2006).CrossRef S. Shibata, Y. Cao, and I. Fukumoto, “Study of the flexural modulus of natural fiber/polypropylene composites by injection molding,” J. Appl. Polym. Sci., 100, No. 2, 911-917 (2006).CrossRef
49.
go back to reference A. Dixit and H. S. Mali, “Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a review,” Mech. Compos. Mater., 49, No. 1, 1-20 (2013).CrossRef A. Dixit and H. S. Mali, “Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a review,” Mech. Compos. Mater., 49, No. 1, 1-20 (2013).CrossRef
50.
go back to reference B. Baghaei, M. Skrifvars, and L. Berglin, “Manufacture and characterisation of thermoplastic composites made from PLA/hemp co-wrapped hybrid yarn prepregs,” Compos., Part A, Appl. Sci. Manuf., 50, 93-101 (2013).CrossRef B. Baghaei, M. Skrifvars, and L. Berglin, “Manufacture and characterisation of thermoplastic composites made from PLA/hemp co-wrapped hybrid yarn prepregs,” Compos., Part A, Appl. Sci. Manuf., 50, 93-101 (2013).CrossRef
51.
go back to reference H. Savastano, S. F. Santos, M. Radonjic, and W. O. Soboyejo, “Fracture and fatigue of natural fiber-reinforced cementitious composites,” Cem. Concr. Compos., 31, No. 4, 232-243 (2009).CrossRef H. Savastano, S. F. Santos, M. Radonjic, and W. O. Soboyejo, “Fracture and fatigue of natural fiber-reinforced cementitious composites,” Cem. Concr. Compos., 31, No. 4, 232-243 (2009).CrossRef
52.
go back to reference P. Tripathi, V. K. Gupta, A. Dixit, R. K. Mishra, and S. Sharma, “Development and characterization of low cost jute, bagasse and glass fiber reinforced advanced hybrid epoxy composites,” AIMS Mater. Sci., 5, No. 2, 320-337 (2018).CrossRef P. Tripathi, V. K. Gupta, A. Dixit, R. K. Mishra, and S. Sharma, “Development and characterization of low cost jute, bagasse and glass fiber reinforced advanced hybrid epoxy composites,” AIMS Mater. Sci., 5, No. 2, 320-337 (2018).CrossRef
53.
go back to reference A. Schirp, F. Loge, S. Aust, P. Swaner, G. Turner, and M. Wolcott, “Production and characterization of natural fiberreinforced thermoplastic composites using wheat straw modified with the fungus Pleurotus ostreatus,” J. Appl. Polym. Sci., 102, No. 6, 5191-5201 (2006).CrossRef A. Schirp, F. Loge, S. Aust, P. Swaner, G. Turner, and M. Wolcott, “Production and characterization of natural fiberreinforced thermoplastic composites using wheat straw modified with the fungus Pleurotus ostreatus,” J. Appl. Polym. Sci., 102, No. 6, 5191-5201 (2006).CrossRef
54.
go back to reference V. G. Geethamma, L. A. Pothen, B. Rhao, N. R. Neelakantan, and S. Thomas, “Tensile stress relaxation of short-coirfiber-reinforced natural rubber composites,” J. Appl. Polym. Sci., 94, No. 1, 96-104 (2004).CrossRef V. G. Geethamma, L. A. Pothen, B. Rhao, N. R. Neelakantan, and S. Thomas, “Tensile stress relaxation of short-coirfiber-reinforced natural rubber composites,” J. Appl. Polym. Sci., 94, No. 1, 96-104 (2004).CrossRef
55.
go back to reference A. Valadez-Gonzalez, J. M. Cervantes-Uc, R. Olayo, and P. J. Herrera-Franco, “Effect of fiber surface treatment on the fiber-matrix bond strength of natural-fiber-reinforced composites,” Compos., Part B, Eng., 30, No. 3, 309-320 (1999).CrossRef A. Valadez-Gonzalez, J. M. Cervantes-Uc, R. Olayo, and P. J. Herrera-Franco, “Effect of fiber surface treatment on the fiber-matrix bond strength of natural-fiber-reinforced composites,” Compos., Part B, Eng., 30, No. 3, 309-320 (1999).CrossRef
56.
go back to reference M. Chalid, A. Rahman, R. Ferdian, Nofrijon, and B. Priyono, “On the tensile properties of polylactide (pla)/arenga pinnata ijuk fibre composite,” Macromolecular Symposia, 353, No. 1, 108-114 (2015).CrossRef M. Chalid, A. Rahman, R. Ferdian, Nofrijon, and B. Priyono, “On the tensile properties of polylactide (pla)/arenga pinnata ijuk fibre composite,” Macromolecular Symposia, 353, No. 1, 108-114 (2015).CrossRef
57.
go back to reference Y. Du, T. Wu, N. Yan, M. T. Kortschot, and R. Farnood, “Pulp fiber-reinforced thermoset polymer composites: Effects of the pulp fibers and polymer,” Compos., Part B, Eng., 48, 10-17 (2013).CrossRef Y. Du, T. Wu, N. Yan, M. T. Kortschot, and R. Farnood, “Pulp fiber-reinforced thermoset polymer composites: Effects of the pulp fibers and polymer,” Compos., Part B, Eng., 48, 10-17 (2013).CrossRef
58.
go back to reference N. Sgriccia and M. C. Hawley, “Thermal, morphological, and electrical characterization of microwave processed natural-fiber composites,” Compos. Sci. Technol., 67, No. 9, 1986-1991 (2007).CrossRef N. Sgriccia and M. C. Hawley, “Thermal, morphological, and electrical characterization of microwave processed natural-fiber composites,” Compos. Sci. Technol., 67, No. 9, 1986-1991 (2007).CrossRef
59.
go back to reference A. K. Mohanty, M. Misra, and L. T. Drzal, “Surface modifications of natural fibers and performance of the resulting biocomposites: an overview,” Compos. Interfaces, 8, No. 5, 313-343 (2001).CrossRef A. K. Mohanty, M. Misra, and L. T. Drzal, “Surface modifications of natural fibers and performance of the resulting biocomposites: an overview,” Compos. Interfaces, 8, No. 5, 313-343 (2001).CrossRef
60.
go back to reference M. Asim, M. Jawaid, K. Abdan, and M. R. Ishak, “Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres,” J. Bionic Eng., 13, No. 3, 426-435 (2016).CrossRef M. Asim, M. Jawaid, K. Abdan, and M. R. Ishak, “Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres,” J. Bionic Eng., 13, No. 3, 426-435 (2016).CrossRef
61.
go back to reference T. H. Nam, S. Ogihara, N. H. Tung, and S. Kobayashi, “Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites,” Compos., Part B, Eng., 42, No. 6, 1648-1656 (2011).CrossRef T. H. Nam, S. Ogihara, N. H. Tung, and S. Kobayashi, “Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites,” Compos., Part B, Eng., 42, No. 6, 1648-1656 (2011).CrossRef
62.
go back to reference D. De, D. De, and B. Adhikari, “Curing characteristics and mechanical properties of alkali-treated grass-fiber-filled natural rubber composites and effects of bonding agent,” J. Appl. Polym. Sci., 101, No. 5, 3151-3160 (2006).CrossRef D. De, D. De, and B. Adhikari, “Curing characteristics and mechanical properties of alkali-treated grass-fiber-filled natural rubber composites and effects of bonding agent,” J. Appl. Polym. Sci., 101, No. 5, 3151-3160 (2006).CrossRef
63.
go back to reference S. C. Jana and A. Prieto, “On the development of natural-fiber composites of high-temperature thermoplastic polymers,” J. Appl. Polym. Sci., 86, No. 9, 2159-2167 (2002).CrossRef S. C. Jana and A. Prieto, “On the development of natural-fiber composites of high-temperature thermoplastic polymers,” J. Appl. Polym. Sci., 86, No. 9, 2159-2167 (2002).CrossRef
64.
go back to reference V. G. Geethamma, R. Joseph, and S. Thomas, “Short coir fiber-reinforced natural rubber composites: Effects of fiber length, orientation, and alkali treatment,” J. Appl. Polym. Sci., 55, No. 4, 583-594 (1995).CrossRef V. G. Geethamma, R. Joseph, and S. Thomas, “Short coir fiber-reinforced natural rubber composites: Effects of fiber length, orientation, and alkali treatment,” J. Appl. Polym. Sci., 55, No. 4, 583-594 (1995).CrossRef
65.
go back to reference L. Mathew and R. Joseph, “Mechanical properties of short-isora-fiber-reinforced natural rubber composites: Effects of fiber length, orientation, and loading; alkali treatment; and bonding agent,” J. Appl. Polym. Sci., 103, No. 3, 1640-1650 (2007).CrossRef L. Mathew and R. Joseph, “Mechanical properties of short-isora-fiber-reinforced natural rubber composites: Effects of fiber length, orientation, and loading; alkali treatment; and bonding agent,” J. Appl. Polym. Sci., 103, No. 3, 1640-1650 (2007).CrossRef
66.
go back to reference M. Jacob, S. Thomas, and K. T. Varughese, “Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites,” Compos. Sci. Technol., 64, Nos. 7-8, 955-965 (2004).CrossRef M. Jacob, S. Thomas, and K. T. Varughese, “Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites,” Compos. Sci. Technol., 64, Nos. 7-8, 955-965 (2004).CrossRef
67.
go back to reference M. Jacob, B. Francis, S. Thomas, and K. T. Varughese, “Dynamical mechanical analysis of sisal/oil palm hybrid fiberreinforced natural rubber composites,” Polym. Compos., 27, No. 6, 671-680 (2006).CrossRef M. Jacob, B. Francis, S. Thomas, and K. T. Varughese, “Dynamical mechanical analysis of sisal/oil palm hybrid fiberreinforced natural rubber composites,” Polym. Compos., 27, No. 6, 671-680 (2006).CrossRef
68.
go back to reference L. Boopathi, P. S. Sampath, and K. Mylsamy, “Investigation of physical , chemical and mechanical properties of raw and alkali treated Borassus fruit fiber,” Compos., Part B, 43, No. 8, 3044-3052 (2012).CrossRef L. Boopathi, P. S. Sampath, and K. Mylsamy, “Investigation of physical , chemical and mechanical properties of raw and alkali treated Borassus fruit fiber,” Compos., Part B, 43, No. 8, 3044-3052 (2012).CrossRef
69.
go back to reference S. Srisuwan, N. Prasoetsopha, N. Suppakarn, and P. Chumsamrong, “The effects of alkalized and silanized woven sisal fibers on mechanical properties of natural rubber modified epoxy resin,” Energy Procedia, 56, C, 19-25 (2014).CrossRef S. Srisuwan, N. Prasoetsopha, N. Suppakarn, and P. Chumsamrong, “The effects of alkalized and silanized woven sisal fibers on mechanical properties of natural rubber modified epoxy resin,” Energy Procedia, 56, C, 19-25 (2014).CrossRef
70.
go back to reference R. E. Guzmán, S. Gómez, O. Amelines, and G. M. Aparicio, “Superficial modification by alkalization of cellulose Fibres obtained from Fique leaf,” in IOP Conference Series: Materials Science and Engineering, 437, No. 1, 0-12 (2018). R. E. Guzmán, S. Gómez, O. Amelines, and G. M. Aparicio, “Superficial modification by alkalization of cellulose Fibres obtained from Fique leaf,” in IOP Conference Series: Materials Science and Engineering, 437, No. 1, 0-12 (2018).
71.
go back to reference C. Juárez, A. Durán, P. Valdez, and G. Fajardo, “Performance of “Agave lecheguilla” natural fiber in portland cement composites exposed to severe environment conditions,” Build. Environment, 42, No. 3, 1151-1157 (2007).CrossRef C. Juárez, A. Durán, P. Valdez, and G. Fajardo, “Performance of “Agave lecheguilla” natural fiber in portland cement composites exposed to severe environment conditions,” Build. Environment, 42, No. 3, 1151-1157 (2007).CrossRef
72.
go back to reference L. Sobczak, O. Brüggemann, and R. F. Putz, “Polyolefin composites with natural fibers and wood-modification of the fiber/filler-matrix interaction,” Journal of Applied Polymer Science, 127, No. 1. 1-17 (2013).CrossRef L. Sobczak, O. Brüggemann, and R. F. Putz, “Polyolefin composites with natural fibers and wood-modification of the fiber/filler-matrix interaction,” Journal of Applied Polymer Science, 127, No. 1. 1-17 (2013).CrossRef
73.
go back to reference R. M. Rowell, “Acetylation of natural fibers to improve performance,” Mol. Cryst. Liq. Cryst., 418, No. 1, 153-164 (2004).CrossRef R. M. Rowell, “Acetylation of natural fibers to improve performance,” Mol. Cryst. Liq. Cryst., 418, No. 1, 153-164 (2004).CrossRef
74.
go back to reference R. M. Rowell, A.-M. Tillman, and R. Simonson, “A simplified procedure for the acetylation of hardwood and softwood flaxes for flakeboard production,” J. Wood Chem. Technol., 6, No. 3, 427-448 (1986).CrossRef R. M. Rowell, A.-M. Tillman, and R. Simonson, “A simplified procedure for the acetylation of hardwood and softwood flaxes for flakeboard production,” J. Wood Chem. Technol., 6, No. 3, 427-448 (1986).CrossRef
75.
go back to reference P. R. Fitch-Vargas et al., “Mechanical, physical and microstructural properties of acetylated starch-based biocomposites reinforced with acetylated sugarcane fiber,” Carbohydr. Polym., 219, 378-386 (2019).CrossRef P. R. Fitch-Vargas et al., “Mechanical, physical and microstructural properties of acetylated starch-based biocomposites reinforced with acetylated sugarcane fiber,” Carbohydr. Polym., 219, 378-386 (2019).CrossRef
78.
go back to reference R. Senthilraja, R. Sarala, A. Godwin Antony, and Seshadhri, “Effect of acetylation technique on mechanical behavior and durability of palm fibre vinyl-ester composites,” Mater. Today Proc., 21, 634-637 (2020).CrossRef R. Senthilraja, R. Sarala, A. Godwin Antony, and Seshadhri, “Effect of acetylation technique on mechanical behavior and durability of palm fibre vinyl-ester composites,” Mater. Today Proc., 21, 634-637 (2020).CrossRef
79.
go back to reference H. U. Zaman and R. A. Khan, “Acetylation used for natural fiber/polymer composites,” J. Thermoplast. Compos. Mater., 34, No. 1, 3-23. (2019).CrossRef H. U. Zaman and R. A. Khan, “Acetylation used for natural fiber/polymer composites,” J. Thermoplast. Compos. Mater., 34, No. 1, 3-23. (2019).CrossRef
80.
go back to reference C. B. Okpanachi, E. B. Agbaji, P. A. P. Mamza, and S. A. Yaro, “Effect of acetylation on the mechanical and water absorption properties of pineapple peel reinforced polypropylene composites,” FUDMA Rec. Chem. Sci., 1, No. 3, 28-35 (2020). C. B. Okpanachi, E. B. Agbaji, P. A. P. Mamza, and S. A. Yaro, “Effect of acetylation on the mechanical and water absorption properties of pineapple peel reinforced polypropylene composites,” FUDMA Rec. Chem. Sci., 1, No. 3, 28-35 (2020).
81.
go back to reference L. Pupure, J. Varna, R. Joffe, and A. Pupurs, “An analysis of the nonlinear behavior of lignin-based flax composites,” Mech. Compos. Mater., 49, No. 2, 139-154 (2013).CrossRef L. Pupure, J. Varna, R. Joffe, and A. Pupurs, “An analysis of the nonlinear behavior of lignin-based flax composites,” Mech. Compos. Mater., 49, No. 2, 139-154 (2013).CrossRef
82.
go back to reference A. Komuraiah, N. S. Kumar, and B. D. Prasad, “Chemical composition of natural fibers and its influence on their mechanical properties,” Mech. Compos. Mater., 50, No. 3, 359-376 (2014).CrossRef A. Komuraiah, N. S. Kumar, and B. D. Prasad, “Chemical composition of natural fibers and its influence on their mechanical properties,” Mech. Compos. Mater., 50, No. 3, 359-376 (2014).CrossRef
83.
go back to reference P. J. Herrera-Franco and A. Valadez-González, “A study of the mechanical properties of short natural-fiber reinforced composites,” Compos., Part B, Eng., 36, No. 8, 597-608 (2005).CrossRef P. J. Herrera-Franco and A. Valadez-González, “A study of the mechanical properties of short natural-fiber reinforced composites,” Compos., Part B, Eng., 36, No. 8, 597-608 (2005).CrossRef
84.
go back to reference A. Guleria, A. S. Singha, and R. K. Rana, “Mechanical, thermal, morphological, and biodegradable studies of okra cellulosic fiber reinforced starch-based biocomposites,” Adv. Polym. Technol., 37, No. 1, 104-112 (2018).CrossRef A. Guleria, A. S. Singha, and R. K. Rana, “Mechanical, thermal, morphological, and biodegradable studies of okra cellulosic fiber reinforced starch-based biocomposites,” Adv. Polym. Technol., 37, No. 1, 104-112 (2018).CrossRef
86.
go back to reference S. Dharmalingam, O. Meenakshisundaram, and V. Kugarajah, “Effect of degree of silanization of luffa on the properties of luffa-epoxy composites,” Colloids Surfaces A Physicochem. Eng. Asp., 603, 125273 (2020).CrossRef S. Dharmalingam, O. Meenakshisundaram, and V. Kugarajah, “Effect of degree of silanization of luffa on the properties of luffa-epoxy composites,” Colloids Surfaces A Physicochem. Eng. Asp., 603, 125273 (2020).CrossRef
87.
go back to reference J. J. R. Arias, J. Lunz, B. D. P. Amantes, and M. D. F. V. Marques, “Synthesis of Polypropylene and Curauá Fiber Composites: Towards High Performance and Low Price Materials,” Fibers Polym., 21, No. 6, 1316-1330 (2020).CrossRef J. J. R. Arias, J. Lunz, B. D. P. Amantes, and M. D. F. V. Marques, “Synthesis of Polypropylene and Curauá Fiber Composites: Towards High Performance and Low Price Materials,” Fibers Polym., 21, No. 6, 1316-1330 (2020).CrossRef
88.
go back to reference K. Messaoudi, S. Nekkaa, and M. Guessoum, “Contribution of surface treatments by esterification and silanization in reinforcing the composites based on Pine cone and Spartium junceum flours and polypropylene,” J. Adhes. Sci. Technol., 33, No. 22, 2405-2429 (2019).CrossRef K. Messaoudi, S. Nekkaa, and M. Guessoum, “Contribution of surface treatments by esterification and silanization in reinforcing the composites based on Pine cone and Spartium junceum flours and polypropylene,” J. Adhes. Sci. Technol., 33, No. 22, 2405-2429 (2019).CrossRef
89.
go back to reference A. Hatipoglu and A. S. Dike, “Effects of concentration and surface silanization of barite on the mechanical and physical properties of poly(lactic acid)/barite composites,” Polym. Polym. Compos., 28, No. 2, 140-148 (2020). A. Hatipoglu and A. S. Dike, “Effects of concentration and surface silanization of barite on the mechanical and physical properties of poly(lactic acid)/barite composites,” Polym. Polym. Compos., 28, No. 2, 140-148 (2020).
90.
go back to reference S. Mohd Izwan, S. M. Sapuan, M. Y. M. Zuhri, and A. R. Mohamed, “Effects of Benzoyl Treatment on NaOH Treated Sugar Palm Fiber: Tensile, Thermal, and Morphological Properties,” J. Mater. Res. Technol., 9, No. 3, 5805-5814 (2020).CrossRef S. Mohd Izwan, S. M. Sapuan, M. Y. M. Zuhri, and A. R. Mohamed, “Effects of Benzoyl Treatment on NaOH Treated Sugar Palm Fiber: Tensile, Thermal, and Morphological Properties,” J. Mater. Res. Technol., 9, No. 3, 5805-5814 (2020).CrossRef
91.
go back to reference K. S. Senthil, S. Kathiravan, M. Ponmariappan, S. Yashwhanth, S. Akshay, and Y. Hu, “Study of raw and chemically treated Sansevieria ehrenbergii fibers for brake pad application,” Mater. Research Express, 17, No. 5, 055102 (2020). K. S. Senthil, S. Kathiravan, M. Ponmariappan, S. Yashwhanth, S. Akshay, and Y. Hu, “Study of raw and chemically treated Sansevieria ehrenbergii fibers for brake pad application,” Mater. Research Express, 17, No. 5, 055102 (2020).
92.
go back to reference S. Nayak and J. R. Mohanty, “Influence of chemical treatment on tensile strength, water absorption, surface morphology, and thermal analysis of areca sheath fibers,” J. Nat. Fibers, 16, No. 4, 589-599 (2019).CrossRef S. Nayak and J. R. Mohanty, “Influence of chemical treatment on tensile strength, water absorption, surface morphology, and thermal analysis of areca sheath fibers,” J. Nat. Fibers, 16, No. 4, 589-599 (2019).CrossRef
95.
go back to reference M. V. Scatolino et al., “How the surface wettability and modulus of elasticity of the Amazonian paricá nanofibrils films are affected by the chemical changes of the natural fibers,” Eur. J. Wood Wood Prod., 76, No. 6, 1581-1594 (2018).CrossRef M. V. Scatolino et al., “How the surface wettability and modulus of elasticity of the Amazonian paricá nanofibrils films are affected by the chemical changes of the natural fibers,” Eur. J. Wood Wood Prod., 76, No. 6, 1581-1594 (2018).CrossRef
96.
go back to reference K. C. C. de Carvalho Benini, H. J. Voorwald, and M. O. H. Cioffi, “Manufacturing and characterization of high impact polystyrene (HIPS) reinforced with treated sugarcane bagasse,” J. Res. Updat. Polym. Sci., 6, No. 1, 2-11 (2017).CrossRef K. C. C. de Carvalho Benini, H. J. Voorwald, and M. O. H. Cioffi, “Manufacturing and characterization of high impact polystyrene (HIPS) reinforced with treated sugarcane bagasse,” J. Res. Updat. Polym. Sci., 6, No. 1, 2-11 (2017).CrossRef
97.
go back to reference J. A. Halip, L. S. Hua, Z. Ashaari, P. M. Tahir, L. W. Chen, and M. K. A. Uyup, Effect of treatment on water absorption behavior of natural fiber-reinforced polymer composites, Ch. 8 in: Mechanical and Physical Testing of Boiocomposites, Fibre-Reinforced Composites and Hybrid Composites, /Eds. M. Jawaid, M. Tharig, and N. Saba, Elsevier Ltd (2018). J. A. Halip, L. S. Hua, Z. Ashaari, P. M. Tahir, L. W. Chen, and M. K. A. Uyup, Effect of treatment on water absorption behavior of natural fiber-reinforced polymer composites, Ch. 8 in: Mechanical and Physical Testing of Boiocomposites, Fibre-Reinforced Composites and Hybrid Composites, /Eds. M. Jawaid, M. Tharig, and N. Saba, Elsevier Ltd (2018).
98.
go back to reference P. Suwanruji, T. Tuechart, W. Smitthipong, and R. Chollakup, “Modification of pineapple leaf fiber surfaces with silane and isocyanate for reinforcing thermoplastic,” J. Thermoplast. Compos. Mater., 30, No. 10, 1344-1360 (2017).CrossRef P. Suwanruji, T. Tuechart, W. Smitthipong, and R. Chollakup, “Modification of pineapple leaf fiber surfaces with silane and isocyanate for reinforcing thermoplastic,” J. Thermoplast. Compos. Mater., 30, No. 10, 1344-1360 (2017).CrossRef
99.
go back to reference U. Tayfun, M. Dogan, and E. Bayramli, “Investigations of the flax fiber/thermoplastic polyurethane eco-composites: influence of isocyanate modification of flax fiber surface,” Polym. Compos., 38, No. 12, 2874-2880 (2017).CrossRef U. Tayfun, M. Dogan, and E. Bayramli, “Investigations of the flax fiber/thermoplastic polyurethane eco-composites: influence of isocyanate modification of flax fiber surface,” Polym. Compos., 38, No. 12, 2874-2880 (2017).CrossRef
100.
go back to reference Q. Hu, X. Yan, C. Dong, and W. Hu, “Chemical modifications on linen for unsaturated polyester composites,” Chem. Res. Chinese Univ., 32, No. 6, 1057-1062 (2016).CrossRef Q. Hu, X. Yan, C. Dong, and W. Hu, “Chemical modifications on linen for unsaturated polyester composites,” Chem. Res. Chinese Univ., 32, No. 6, 1057-1062 (2016).CrossRef
101.
go back to reference U. O. Ududua, M. O. Monanu, and L. C. Chuku, “Proximate analysis and phytochemical profile of brachystegia eurycoma leaves,” Asian J. Res. Biochem., 4, No. 2, 1-11 (2019).CrossRef U. O. Ududua, M. O. Monanu, and L. C. Chuku, “Proximate analysis and phytochemical profile of brachystegia eurycoma leaves,” Asian J. Res. Biochem., 4, No. 2, 1-11 (2019).CrossRef
102.
go back to reference K. L. Pickerinq, Y. Li, and R. L. Farrell, “Fungal and alkali interfacial modification of hemp fibre reinforced composites,” Key Eng. Mater., 334-335, No. 1, 493-496 (2007).CrossRef K. L. Pickerinq, Y. Li, and R. L. Farrell, “Fungal and alkali interfacial modification of hemp fibre reinforced composites,” Key Eng. Mater., 334-335, No. 1, 493-496 (2007).CrossRef
103.
go back to reference W. Sun, M. Tajvidi, C. G. Hunt, G. McIntyre, and D. J. Gardner, “Fully bio-based hybrid composites made of wood, fungal mycelium and cellulose nanofibrils,” Sci. Rep., 9, No. 1, 1-12 (2019). W. Sun, M. Tajvidi, C. G. Hunt, G. McIntyre, and D. J. Gardner, “Fully bio-based hybrid composites made of wood, fungal mycelium and cellulose nanofibrils,” Sci. Rep., 9, No. 1, 1-12 (2019).
104.
go back to reference T. P. Sathishkumar, “Influence of cellulose water absorption on the tensile properties of polyester composites reinforced with Sansevieria ehrenbergii fibers,” J. Ind. Text., 45, No. 6, 1674-1688 (2014).CrossRef T. P. Sathishkumar, “Influence of cellulose water absorption on the tensile properties of polyester composites reinforced with Sansevieria ehrenbergii fibers,” J. Ind. Text., 45, No. 6, 1674-1688 (2014).CrossRef
105.
go back to reference M. Sood and G. Dwivedi, “Effect of fiber treatment on flexural properties of natural-fiber-reinforced composites: A review,” Egypt. J. Pet., 27, No. 4, 775-783 (2018).CrossRef M. Sood and G. Dwivedi, “Effect of fiber treatment on flexural properties of natural-fiber-reinforced composites: A review,” Egypt. J. Pet., 27, No. 4, 775-783 (2018).CrossRef
106.
go back to reference N. H. Sari, M. R. Sanjay, G. R. Arpitha, C. I. Pruncu, and S. Siengchin, “Synthesis and properties of pandanwangi fiber reinforced polyethylene composites: Evaluation of dicumyl peroxide (DCP) effect,” Compos. Commun., 15, 53-57 (2019).CrossRef N. H. Sari, M. R. Sanjay, G. R. Arpitha, C. I. Pruncu, and S. Siengchin, “Synthesis and properties of pandanwangi fiber reinforced polyethylene composites: Evaluation of dicumyl peroxide (DCP) effect,” Compos. Commun., 15, 53-57 (2019).CrossRef
107.
go back to reference M. N. I. M. Sabri, M. B. A. Bakar, M. N. Masri, and M. Mohamed, Effect of chemical treatment on mechanical and physical properties of non-woven kenaf fiber mat reinforced polypropylene biocomposites, AIP Conf. Proc., 2213, No. 1, 020262 (2020).CrossRef M. N. I. M. Sabri, M. B. A. Bakar, M. N. Masri, and M. Mohamed, Effect of chemical treatment on mechanical and physical properties of non-woven kenaf fiber mat reinforced polypropylene biocomposites, AIP Conf. Proc., 2213, No. 1, 020262 (2020).CrossRef
108.
go back to reference T. J. Keener, R. K. Stuart, and T. K. Brown, “Maleated coupling agents for natural fibre composites,” Compos., Part A, Appl. Sci. Manuf., 35, No. 3, 357-362 (2004).CrossRef T. J. Keener, R. K. Stuart, and T. K. Brown, “Maleated coupling agents for natural fibre composites,” Compos., Part A, Appl. Sci. Manuf., 35, No. 3, 357-362 (2004).CrossRef
109.
go back to reference F. Tanas, “Modified hemp fibers intended for fiber-reinforced polymer composites used in structural applications — A review I. Methods of modification,” Polymer Compos., 41, 1-27 (2019). F. Tanas, “Modified hemp fibers intended for fiber-reinforced polymer composites used in structural applications — A review I. Methods of modification,” Polymer Compos., 41, 1-27 (2019).
110.
go back to reference R. Babji, U. Reddy, Mokshegna, and S. Shakthivel, “Characteristic Investigation and Comparison between Vetiver fiberreinforced polypropylene and polyethylene with Coconut shell powder and Maleic anhydride as filler and coupling agents,” Mater. Today Proc., 24, 2339-2351 (2019).CrossRef R. Babji, U. Reddy, Mokshegna, and S. Shakthivel, “Characteristic Investigation and Comparison between Vetiver fiberreinforced polypropylene and polyethylene with Coconut shell powder and Maleic anhydride as filler and coupling agents,” Mater. Today Proc., 24, 2339-2351 (2019).CrossRef
111.
go back to reference M. H. M. Hamdan, J. P. Siregar, M. R. M. Rejab, D. Bachtiar, J. Jamiluddin, and C. Tezara, “Effect of maleated anhydride on mechanical properties of rice husk filler reinforced PLA matrix polymer composite,” Int. J. Precis. Eng. Manuf. — Green Technol., 6, No. 1, 113-124 (2019).CrossRef M. H. M. Hamdan, J. P. Siregar, M. R. M. Rejab, D. Bachtiar, J. Jamiluddin, and C. Tezara, “Effect of maleated anhydride on mechanical properties of rice husk filler reinforced PLA matrix polymer composite,” Int. J. Precis. Eng. Manuf. — Green Technol., 6, No. 1, 113-124 (2019).CrossRef
112.
go back to reference R. Maziero, K. Soares, A. I. Filho, A. R. Franco, and J. C. C. Rubio, “Maleated polypropylene as coupling agent for polypropylene composites reinforced with eucalyptus and Pinus particles,” BioResources, 14, No. 2, 4774-4791 (2019).CrossRef R. Maziero, K. Soares, A. I. Filho, A. R. Franco, and J. C. C. Rubio, “Maleated polypropylene as coupling agent for polypropylene composites reinforced with eucalyptus and Pinus particles,” BioResources, 14, No. 2, 4774-4791 (2019).CrossRef
113.
go back to reference M. Ravi, R. R. Dubey, A. Shome, S. Guha, and C. Anil Kumar, “Effect of surface treatment on natural fibers composite,” IOP Conf. Ser. Mater. Sci. Eng., 376, No. 1 (2018). M. Ravi, R. R. Dubey, A. Shome, S. Guha, and C. Anil Kumar, “Effect of surface treatment on natural fibers composite,” IOP Conf. Ser. Mater. Sci. Eng., 376, No. 1 (2018).
114.
go back to reference A. M. Khalil, K. F. El-Nemr, and M. L. Hassan, “Acrylate-modified gamma-irradiated olive stones waste as a filler for acrylonitrile butadiene rubber/devulcanized rubber composites,” J. Polym. Res., 26, No. 11 (2019). A. M. Khalil, K. F. El-Nemr, and M. L. Hassan, “Acrylate-modified gamma-irradiated olive stones waste as a filler for acrylonitrile butadiene rubber/devulcanized rubber composites,” J. Polym. Res., 26, No. 11 (2019).
115.
go back to reference S. Chen, N. Hori, M. Kajiyama, and A. Takemura, “Compatibilities and properties of poly lactide/poly (methyl acrylate) grafted chicken feather composite: Effects of graft chain length,” J. Appl. Polym. Sci., 137, No. 34, 1-14 (2020).CrossRef S. Chen, N. Hori, M. Kajiyama, and A. Takemura, “Compatibilities and properties of poly lactide/poly (methyl acrylate) grafted chicken feather composite: Effects of graft chain length,” J. Appl. Polym. Sci., 137, No. 34, 1-14 (2020).CrossRef
116.
go back to reference R. Qi, C. He, and Q. Jin, “Effect of acrylate-styrene-acrylonitrile on the aging properties of eucalyptus/PVC woodplastic composites,” BioResources, 14, No. 4, 9159-9168 (2019). R. Qi, C. He, and Q. Jin, “Effect of acrylate-styrene-acrylonitrile on the aging properties of eucalyptus/PVC woodplastic composites,” BioResources, 14, No. 4, 9159-9168 (2019).
117.
go back to reference F. G. Torres and M. L. Cubillas, “Study of the interfacial properties of natural fibre reinforced polyethylene,” Polym. Test., 24, No. 6, 694-698 (2005).CrossRef F. G. Torres and M. L. Cubillas, “Study of the interfacial properties of natural fibre reinforced polyethylene,” Polym. Test., 24, No. 6, 694-698 (2005).CrossRef
118.
go back to reference P. Madhu et al., “Effect of various chemical treatments of prosopis juliflora fibers as composite reinforcement: physicochemical, thermal, mechanical, and morphological properties,” J. Nat. Fibers, 17, No. 6, 833-844 (2020).CrossRef P. Madhu et al., “Effect of various chemical treatments of prosopis juliflora fibers as composite reinforcement: physicochemical, thermal, mechanical, and morphological properties,” J. Nat. Fibers, 17, No. 6, 833-844 (2020).CrossRef
119.
go back to reference A. Paul, K. Joseph, and S. Thomas, “Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers,” Compos. Sci. Technol., 57, No. 1, 67-79 (1997).CrossRef A. Paul, K. Joseph, and S. Thomas, “Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers,” Compos. Sci. Technol., 57, No. 1, 67-79 (1997).CrossRef
120.
go back to reference N. E. Zafeiropoulos, C. A. Baillie, and J. M. Hodgkinson, “Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part II. The effect of surface treatments on the interface,” Compos., Part A, Appl. Sci. Manuf., 33, No. 9, 1185-1190 (2002).CrossRef N. E. Zafeiropoulos, C. A. Baillie, and J. M. Hodgkinson, “Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part II. The effect of surface treatments on the interface,” Compos., Part A, Appl. Sci. Manuf., 33, No. 9, 1185-1190 (2002).CrossRef
121.
go back to reference K. Roy, S. C. Debnath, L. Tzounis, A. Pongwisuthiruchte, and P. Potiyaraj, “Effect of various surface treatments on the performance of jute fibers filled natural rubber (NR) composites,” Polymers (Basel), 12, No. 2 (2020). K. Roy, S. C. Debnath, L. Tzounis, A. Pongwisuthiruchte, and P. Potiyaraj, “Effect of various surface treatments on the performance of jute fibers filled natural rubber (NR) composites,” Polymers (Basel), 12, No. 2 (2020).
122.
go back to reference J. A. Khan, M. A. Khan, and R. Islam, “Effect of potassium permanganate on mechanical, thermal and degradation characteristics of jute fabric-reinforced polypropylene composite,” J. Reinf. Plast. Compos., 31, No. 24, 1725-1736 (2012).CrossRef J. A. Khan, M. A. Khan, and R. Islam, “Effect of potassium permanganate on mechanical, thermal and degradation characteristics of jute fabric-reinforced polypropylene composite,” J. Reinf. Plast. Compos., 31, No. 24, 1725-1736 (2012).CrossRef
123.
go back to reference H. U. Zaman, M. A. Khan, R. A. Khan, M. A. Rahman, L. R. Das, and M. Al-Mamun, “Role of potassium permanganate and urea on the improvement of the mechanical properties of jute polypropylene composites,” Fibers Polym., 11, No. 3, 455-463 (2010).CrossRef H. U. Zaman, M. A. Khan, R. A. Khan, M. A. Rahman, L. R. Das, and M. Al-Mamun, “Role of potassium permanganate and urea on the improvement of the mechanical properties of jute polypropylene composites,” Fibers Polym., 11, No. 3, 455-463 (2010).CrossRef
125.
go back to reference A. K. Bledzki, S. Reihmane, and J. Gassan, “Properties and modification methods for vegetable fibers for natural-fiber composites,” J. Appl. Polym. Sci., 59, No. 8, 1329-1336 (1996).CrossRef A. K. Bledzki, S. Reihmane, and J. Gassan, “Properties and modification methods for vegetable fibers for natural-fiber composites,” J. Appl. Polym. Sci., 59, No. 8, 1329-1336 (1996).CrossRef
126.
go back to reference M. Nagalakshmaiah et al., “Biocomposites: present trends and challenges for the future.” In: Green Composites Automotive Applications, Elsevier, 197-215 (2019). M. Nagalakshmaiah et al., “Biocomposites: present trends and challenges for the future.” In: Green Composites Automotive Applications, Elsevier, 197-215 (2019).
127.
go back to reference A. Nassar and E. Nassar, “Effect of fiber orientation on the mechanical properties of multi layers laminate nanocomposites,” Heliyon, 6, No. 1, e03167 (2020).CrossRef A. Nassar and E. Nassar, “Effect of fiber orientation on the mechanical properties of multi layers laminate nanocomposites,” Heliyon, 6, No. 1, e03167 (2020).CrossRef
128.
go back to reference L. Wei and A. G. McDonald, “A review on grafting of biofibers for biocomposites,” Materials (Basel), 9, No. 4, 303 (2016).CrossRef L. Wei and A. G. McDonald, “A review on grafting of biofibers for biocomposites,” Materials (Basel), 9, No. 4, 303 (2016).CrossRef
129.
go back to reference S. Li, M. Xiao, A. Zheng, and H. Xiao, “Cellulose microfibrils grafted with PBA via surface-initiated atom transfer radical polymerization for biocomposite reinforcement,” Biomacromolecules, 12, No. 9, 3305-3312 (2011).CrossRef S. Li, M. Xiao, A. Zheng, and H. Xiao, “Cellulose microfibrils grafted with PBA via surface-initiated atom transfer radical polymerization for biocomposite reinforcement,” Biomacromolecules, 12, No. 9, 3305-3312 (2011).CrossRef
130.
go back to reference K. L. Pickering, M. G. A. Efendy, and T. M. Le, “A review of recent developments in natural fibre composites and their mechanical performance,” Compos., Part A, Appl. Sci. Manuf., 83, 98-112 (2016).CrossRef K. L. Pickering, M. G. A. Efendy, and T. M. Le, “A review of recent developments in natural fibre composites and their mechanical performance,” Compos., Part A, Appl. Sci. Manuf., 83, 98-112 (2016).CrossRef
131.
go back to reference S. Mori, C. Tenazoa, S. Candiotti, E. Flores, and S. Charca, “Assessment of Ichu Fibers Extraction and Their Use as Reinforcement in Composite Materials,” J. Nat. Fibers, 17, No. 5, 700-715 (2020).CrossRef S. Mori, C. Tenazoa, S. Candiotti, E. Flores, and S. Charca, “Assessment of Ichu Fibers Extraction and Their Use as Reinforcement in Composite Materials,” J. Nat. Fibers, 17, No. 5, 700-715 (2020).CrossRef
132.
go back to reference D. N. Saheb and J. P. Jog, “Natural fiber polymer composites: A review,” J. Adv. Polym. Technol., 18, No. 4, 351-363 (1999).CrossRef D. N. Saheb and J. P. Jog, “Natural fiber polymer composites: A review,” J. Adv. Polym. Technol., 18, No. 4, 351-363 (1999).CrossRef
133.
go back to reference F. Z. Arrakhiz et al., “Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene,” Mater. Des., 43, 200-205 (2013).CrossRef F. Z. Arrakhiz et al., “Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene,” Mater. Des., 43, 200-205 (2013).CrossRef
134.
go back to reference D. K. Rajak, D. D. Pagar, P. L. Menezes, and E. Linul, “Fiber-Reinforced Polymer Composites: Manufacturing, properties, and applications,” Polymers, 11, No. 10, 1667 (2019).CrossRef D. K. Rajak, D. D. Pagar, P. L. Menezes, and E. Linul, “Fiber-Reinforced Polymer Composites: Manufacturing, properties, and applications,” Polymers, 11, No. 10, 1667 (2019).CrossRef
135.
go back to reference A. I. Isayev and M. Modic, “Self-reinforced melt processible polymer composites: Extrusion, compression, and injection molding,” Polym. Compos., 8, No. 3, 158-175 (1987).CrossRef A. I. Isayev and M. Modic, “Self-reinforced melt processible polymer composites: Extrusion, compression, and injection molding,” Polym. Compos., 8, No. 3, 158-175 (1987).CrossRef
136.
go back to reference M. Pokhriyal, L. Prasad, P. K. Rakesh, and H. P. Raturi, “Influence of fiber loading on physical and mechanical properties of Himalayan nettle fabric reinforced polyester composite,” Mater. Today Proc., 5, No. 9, 16973-16982 (2018).CrossRef M. Pokhriyal, L. Prasad, P. K. Rakesh, and H. P. Raturi, “Influence of fiber loading on physical and mechanical properties of Himalayan nettle fabric reinforced polyester composite,” Mater. Today Proc., 5, No. 9, 16973-16982 (2018).CrossRef
137.
go back to reference J. Jaafar, J. P. Siregar, C. Tezara, M. H. M. Hamdan, and T. Rihayat, “A review of important considerations in the compression molding process of short natural-fiber composites,” Int. J. Adv. Manuf. Technol., 105, Nos. 7-8, 3437-3450 (2019).CrossRef J. Jaafar, J. P. Siregar, C. Tezara, M. H. M. Hamdan, and T. Rihayat, “A review of important considerations in the compression molding process of short natural-fiber composites,” Int. J. Adv. Manuf. Technol., 105, Nos. 7-8, 3437-3450 (2019).CrossRef
138.
go back to reference H. Takashima, K. Miyagai, T. Hashida, and V. C. Li, “A design approach for the mechanical properties of polypropylene discontinuous fiber reinforced cementitious composites by extrusion molding,” Eng. Fract. Mech., 70, Nos. 7-8, 853-870 (2003).CrossRef H. Takashima, K. Miyagai, T. Hashida, and V. C. Li, “A design approach for the mechanical properties of polypropylene discontinuous fiber reinforced cementitious composites by extrusion molding,” Eng. Fract. Mech., 70, Nos. 7-8, 853-870 (2003).CrossRef
139.
go back to reference D. R. Mulinari, H. J. C. Voorwald, M. O. H. Cioffi, M. L. C. P. da Silva, T. G. da Cruz, and C. Saron, “Sugarcane bagasse cellulose/HDPE composites obtained by extrusion,” Compos. Sci. Technol., 69, No. 2, 214-219 (2009).CrossRef D. R. Mulinari, H. J. C. Voorwald, M. O. H. Cioffi, M. L. C. P. da Silva, T. G. da Cruz, and C. Saron, “Sugarcane bagasse cellulose/HDPE composites obtained by extrusion,” Compos. Sci. Technol., 69, No. 2, 214-219 (2009).CrossRef
140.
go back to reference Ł. Kapłon et al., “Plastic scintillators for positron emission tomography obtained by the bulk polymerization method,” Bio-Algorithms and Med-Systems, 10, No. 1, 27-31 (2014).CrossRef Ł. Kapłon et al., “Plastic scintillators for positron emission tomography obtained by the bulk polymerization method,” Bio-Algorithms and Med-Systems, 10, No. 1, 27-31 (2014).CrossRef
141.
go back to reference E. Kassegn, F. Desplentere, and T. Berhanu, “Mechanical properties of short sisal fiber reinforced poly lactic acid (PLA) processed by injection molding,” Branna J. Eng. and Technol., 1, No. 1, 20-36 (2019). E. Kassegn, F. Desplentere, and T. Berhanu, “Mechanical properties of short sisal fiber reinforced poly lactic acid (PLA) processed by injection molding,” Branna J. Eng. and Technol., 1, No. 1, 20-36 (2019).
142.
go back to reference T. Behzad and M. Sain, “Finite element modeling of polymer curing in natural-fiber-reinforced composites,” Compos. Sci. Technol., 67, Nos. 7-8, 1666-1673 (2007).CrossRef T. Behzad and M. Sain, “Finite element modeling of polymer curing in natural-fiber-reinforced composites,” Compos. Sci. Technol., 67, Nos. 7-8, 1666-1673 (2007).CrossRef
143.
go back to reference A. McIlhagger, E. Archer, and R. McIlhagger, “Manufacturing processes for composite materials and components for aerospace applications,” Polym. Compos. Aerosp. Ind., 53-75 (2015). A. McIlhagger, E. Archer, and R. McIlhagger, “Manufacturing processes for composite materials and components for aerospace applications,” Polym. Compos. Aerosp. Ind., 53-75 (2015).
144.
go back to reference C. Atas, Y. Akgun, O. Dagdelen, B. M. Icten, and M. Sarikanat, “An experimental investigation on the low velocity impact response of composite plates repaired by VARIM and hand lay-up processes,” Compos. Struct., 93, No. 3, 1178-1186 (2011).CrossRef C. Atas, Y. Akgun, O. Dagdelen, B. M. Icten, and M. Sarikanat, “An experimental investigation on the low velocity impact response of composite plates repaired by VARIM and hand lay-up processes,” Compos. Struct., 93, No. 3, 1178-1186 (2011).CrossRef
145.
go back to reference M. Saha, R. Prabhakaran, and W. A. Waters, “Compressive properties of pultruded composites,” Mech. Compos. Mater., 36, No. 6, 469-474 (2000).CrossRef M. Saha, R. Prabhakaran, and W. A. Waters, “Compressive properties of pultruded composites,” Mech. Compos. Mater., 36, No. 6, 469-474 (2000).CrossRef
146.
go back to reference E. Barkanov, P. Akishin, E. Namsone, J. Auzins, and A. Morozovs, “Optimization of pultrusion processes for an industrial application,” Mech. Compos. Mater., 56, No. 6, 697-712 (2021).CrossRef E. Barkanov, P. Akishin, E. Namsone, J. Auzins, and A. Morozovs, “Optimization of pultrusion processes for an industrial application,” Mech. Compos. Mater., 56, No. 6, 697-712 (2021).CrossRef
147.
go back to reference A. Vita, V. Castorani, M. Germani, and M. Marconi, “Comparative life cycle assessment and cost analysis of autoclave and pressure bag molding for producing CFRP components,” Int. J. Adv. Manuf. Technol., 105, No. 5, 1967-1982 (2019).CrossRef A. Vita, V. Castorani, M. Germani, and M. Marconi, “Comparative life cycle assessment and cost analysis of autoclave and pressure bag molding for producing CFRP components,” Int. J. Adv. Manuf. Technol., 105, No. 5, 1967-1982 (2019).CrossRef
148.
go back to reference P. J. Halley, “Rheology of thermosets: the use of chemorheology to characterise and model thermoset flow behavior,” Ch. In: Thermosets, 1st Edition, Elsevier, 92-117 (2012). P. J. Halley, “Rheology of thermosets: the use of chemorheology to characterise and model thermoset flow behavior,” Ch. In: Thermosets, 1st Edition, Elsevier, 92-117 (2012).
149.
go back to reference T. O. Mbuya, F. M. Mwema, and H. Shagwira, Lightweight Polymer-Nanoparticle-Based Composites, CRC Press (2021). T. O. Mbuya, F. M. Mwema, and H. Shagwira, Lightweight Polymer-Nanoparticle-Based Composites, CRC Press (2021).
150.
go back to reference A. J. Salaman, A. A. Al-Obaidi, and M. S. Takriff, “Enhancing morphology and compression properties of halloysite reinforced polyurethane nanocomposites using injection-moulding technique,” Results Phys., 14, 102507 (2019).CrossRef A. J. Salaman, A. A. Al-Obaidi, and M. S. Takriff, “Enhancing morphology and compression properties of halloysite reinforced polyurethane nanocomposites using injection-moulding technique,” Results Phys., 14, 102507 (2019).CrossRef
151.
go back to reference L. Averous and F. Le Digabel, “Properties of biocomposites based on lignocellulosic fillers,” Carbohydr. Polym., 66, No. 4, 480-493 (2006).CrossRef L. Averous and F. Le Digabel, “Properties of biocomposites based on lignocellulosic fillers,” Carbohydr. Polym., 66, No. 4, 480-493 (2006).CrossRef
152.
153.
go back to reference M. Nirbhay, R. K. Misra, and A. Dixit, “Finite-element analysis of jute- and coir-fiber-reinforced hybrid composite multipanel plates,” Mech. Compos. Mater., 51, No. 4, 505-520 (2015).CrossRef M. Nirbhay, R. K. Misra, and A. Dixit, “Finite-element analysis of jute- and coir-fiber-reinforced hybrid composite multipanel plates,” Mech. Compos. Mater., 51, No. 4, 505-520 (2015).CrossRef
154.
go back to reference R. Rayyaan, W. R. Kennon, P. Potluri, and M. Akonda, “Fibre architecture modification to improve the tensile properties of flax-reinforced composites,” J. Compos. Mater., 54, No. 3, 379-395 (2020).CrossRef R. Rayyaan, W. R. Kennon, P. Potluri, and M. Akonda, “Fibre architecture modification to improve the tensile properties of flax-reinforced composites,” J. Compos. Mater., 54, No. 3, 379-395 (2020).CrossRef
155.
go back to reference A. Dixit, R. K. Misra, and H. S. Mali, “Compression modeling of plain weave textile fabric using finite elements: Druckmodellierung von flächigen Textilgewebestrukturen mit Finiten Elementen,” Materwiss. Werksttech., 45, No. 7, 600-610 (2014).CrossRef A. Dixit, R. K. Misra, and H. S. Mali, “Compression modeling of plain weave textile fabric using finite elements: Druckmodellierung von flächigen Textilgewebestrukturen mit Finiten Elementen,” Materwiss. Werksttech., 45, No. 7, 600-610 (2014).CrossRef
156.
go back to reference A. Prapavesis, V. Tojaga, S. Östlund, and A. Willem van Vuure, “Back calculated compressive properties of flax fibers utilizing the Impregnated fiber bundle test (IFBT),” Compos. Part A Appl. Sci. Manuf., 135, 105930 (2020).CrossRef A. Prapavesis, V. Tojaga, S. Östlund, and A. Willem van Vuure, “Back calculated compressive properties of flax fibers utilizing the Impregnated fiber bundle test (IFBT),” Compos. Part A Appl. Sci. Manuf., 135, 105930 (2020).CrossRef
157.
go back to reference M. S. A. Bakar, P. Cheang, and K. A. Khor, “Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites,” Compos. Sci. Technol., 63, Nos. 3-4, 421-425 (2003).CrossRef M. S. A. Bakar, P. Cheang, and K. A. Khor, “Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites,” Compos. Sci. Technol., 63, Nos. 3-4, 421-425 (2003).CrossRef
158.
go back to reference D. P. Kamdem, H. Jiang, W. Cui, J. Freed, and L. M. Matuana, “Properties of wood plastic composites made of recycled HDPE and wood flour from CCA-treated wood removed from service,” Compos., Part A, Appl. Sci. Manuf., 35, No. 3, 347-355 (2004).CrossRef D. P. Kamdem, H. Jiang, W. Cui, J. Freed, and L. M. Matuana, “Properties of wood plastic composites made of recycled HDPE and wood flour from CCA-treated wood removed from service,” Compos., Part A, Appl. Sci. Manuf., 35, No. 3, 347-355 (2004).CrossRef
159.
go back to reference S. Harish, D. P. Michael, A. Bensely, D. M. Lal, and A. Rajadurai, “Mechanical property evaluation of natural fiber coir composite,” Mater. Charact., 60, No. 1, 44-49 (2009).CrossRef S. Harish, D. P. Michael, A. Bensely, D. M. Lal, and A. Rajadurai, “Mechanical property evaluation of natural fiber coir composite,” Mater. Charact., 60, No. 1, 44-49 (2009).CrossRef
160.
go back to reference M. Boopalan, M. Niranjanaa, and M. J. Umapathy, “Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites,” Compos., Part B, Eng., 51, 54-57 (2013).CrossRef M. Boopalan, M. Niranjanaa, and M. J. Umapathy, “Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites,” Compos., Part B, Eng., 51, 54-57 (2013).CrossRef
161.
go back to reference S. Rao, K. Jayaraman, and D. Bhattacharyya, “Micro and macro analysis of sisal fibre composites hollow core sandwich panels,” Compos., Part B, Eng., 43, No. 7, 2738-2745 (2012).CrossRef S. Rao, K. Jayaraman, and D. Bhattacharyya, “Micro and macro analysis of sisal fibre composites hollow core sandwich panels,” Compos., Part B, Eng., 43, No. 7, 2738-2745 (2012).CrossRef
162.
go back to reference S. A. Rodrigues Junior, C. H. Zanchi, R. V. de Carvalho, and F. F. Demarco, “Flexural strength and modulus of elasticity of different types of resin-based composites,” Braz. Oral Res., 21, No. 1, 16-21 (2007).CrossRef S. A. Rodrigues Junior, C. H. Zanchi, R. V. de Carvalho, and F. F. Demarco, “Flexural strength and modulus of elasticity of different types of resin-based composites,” Braz. Oral Res., 21, No. 1, 16-21 (2007).CrossRef
163.
go back to reference D. Bachtiar, S. M. Sapuan, A. Khalina, E. S. Zainudin, and K. Z. M. Dahlan, “Flexural and impact properties of chemically treated sugar palm fiber reinforced high impact polystyrene composites,” Fibers Polym., 13, No. 7, 894-898 (2012).CrossRef D. Bachtiar, S. M. Sapuan, A. Khalina, E. S. Zainudin, and K. Z. M. Dahlan, “Flexural and impact properties of chemically treated sugar palm fiber reinforced high impact polystyrene composites,” Fibers Polym., 13, No. 7, 894-898 (2012).CrossRef
164.
go back to reference R. Giridharan, V. S. Raatan, and M. P. Jenarthanan, “Experimental study on effect of fiber length and fiber content on tensile and flexural properties of bamboo fiber/epoxy composite,” Multidiscip. Model. Mater. Struct., 15, No. 5, 947-957 (2019).CrossRef R. Giridharan, V. S. Raatan, and M. P. Jenarthanan, “Experimental study on effect of fiber length and fiber content on tensile and flexural properties of bamboo fiber/epoxy composite,” Multidiscip. Model. Mater. Struct., 15, No. 5, 947-957 (2019).CrossRef
165.
go back to reference A. Benkhelladi, H. Laouici, and A. Bouchoucha, “Tensile and flexural properties of polymer composites reinforced by flax, jute and sisal fibres,” Int. J. Adv. Manuf. Technol., 108, No. 3, 895-916 (2020).CrossRef A. Benkhelladi, H. Laouici, and A. Bouchoucha, “Tensile and flexural properties of polymer composites reinforced by flax, jute and sisal fibres,” Int. J. Adv. Manuf. Technol., 108, No. 3, 895-916 (2020).CrossRef
166.
go back to reference R. Hu and J. K. Lim, “Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites,” J. Compos. Mater., 41, No. 13, 1655-1669 (2007).CrossRef R. Hu and J. K. Lim, “Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites,” J. Compos. Mater., 41, No. 13, 1655-1669 (2007).CrossRef
167.
go back to reference N. S. Suharty, H. Ismail, K. Diharjo, D. S. Handayani, and M. Firdaus, “Effect of kenaf fiber as a reinforcement on the tensile, flexural strength and impact toughness properties of recycled polypropylene/halloysite composites,” Procedia Chem., 19, 253-258 (2016).CrossRef N. S. Suharty, H. Ismail, K. Diharjo, D. S. Handayani, and M. Firdaus, “Effect of kenaf fiber as a reinforcement on the tensile, flexural strength and impact toughness properties of recycled polypropylene/halloysite composites,” Procedia Chem., 19, 253-258 (2016).CrossRef
168.
go back to reference R. Punyamurthy, D. Sampathkumar, R. P. G. Ranganagowda, B. Bennehalli, and C. V. Srinivasa, “Mechanical properties of abaca fiber reinforced polypropylene composites: Effect of chemical treatment by benzenediazonium chloride,” J. King Saud Univ. Sci., 29, No. 3, 289-294 (2017). R. Punyamurthy, D. Sampathkumar, R. P. G. Ranganagowda, B. Bennehalli, and C. V. Srinivasa, “Mechanical properties of abaca fiber reinforced polypropylene composites: Effect of chemical treatment by benzenediazonium chloride,” J. King Saud Univ. Sci., 29, No. 3, 289-294 (2017).
169.
go back to reference M. I. Reddy, M. A. Kumar, and C. R. B. Raju, “Tensile and flexural properties of jute, pineapple leaf and glass fiber reinforced polymer matrix hybrid composites,” Mater. Today Proc., 5, No. 1, 458-462 (2018).CrossRef M. I. Reddy, M. A. Kumar, and C. R. B. Raju, “Tensile and flexural properties of jute, pineapple leaf and glass fiber reinforced polymer matrix hybrid composites,” Mater. Today Proc., 5, No. 1, 458-462 (2018).CrossRef
170.
go back to reference M. Haque, S. Islam, S. Islam, N. Islam, M. Huque, and M. Hasan, “Physicomechanical properties of chemically treated palm fiber reinforced polypropylene composites,” J. Reinf. Plast. Compos., 29, No. 11, 1734-1742 (2010).CrossRef M. Haque, S. Islam, S. Islam, N. Islam, M. Huque, and M. Hasan, “Physicomechanical properties of chemically treated palm fiber reinforced polypropylene composites,” J. Reinf. Plast. Compos., 29, No. 11, 1734-1742 (2010).CrossRef
171.
go back to reference D. B. Dittenber and H. V. S. Gangarao, “Critical review of recent publications on use of natural composites in infrastructure,” Compos., Part A, Appl. Sci. Manuf., 43, 81419-1429 (2012). D. B. Dittenber and H. V. S. Gangarao, “Critical review of recent publications on use of natural composites in infrastructure,” Compos., Part A, Appl. Sci. Manuf., 43, 81419-1429 (2012).
172.
go back to reference D2344/D2344M-13, Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates, ASTM Int. West Conshohocken, PA (2013). D2344/D2344M-13, Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates, ASTM Int. West Conshohocken, PA (2013).
173.
go back to reference S. Sathish, K. Kumaresan, L. Prabhu, and S. Gokulkumar, “Experimental investigation of mechanical and FTIR analysis of flax fiber/epoxy composites incorporating SiC, Al2O3 and graphite,” Rev. Rom. Mater., 48, No. 4, 476 (2018). S. Sathish, K. Kumaresan, L. Prabhu, and S. Gokulkumar, “Experimental investigation of mechanical and FTIR analysis of flax fiber/epoxy composites incorporating SiC, Al2O3 and graphite,” Rev. Rom. Mater., 48, No. 4, 476 (2018).
175.
go back to reference S. S. Heckadka, R. P. Ballambat, V. K. Manjeshwar, V. Ravindranath, P. Hegde, and A. Kamath, “Cone beam computed tomography for mechanical characterization of Flax/Jute/Ultra high molecular weight polyethylene reinforced phenol formaldehyde composites: A comparative assessment,” Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.05.124 S. S. Heckadka, R. P. Ballambat, V. K. Manjeshwar, V. Ravindranath, P. Hegde, and A. Kamath, “Cone beam computed tomography for mechanical characterization of Flax/Jute/Ultra high molecular weight polyethylene reinforced phenol formaldehyde composites: A comparative assessment,” Mater. Today Proc. (2021). https://​doi.​org/​10.​1016/​j.​matpr.​2021.​05.​124
176.
go back to reference M. Kumar, H. Jena, B. Surekha, and S. Sahoo, “Study of mechanical property of cenosphere and clamshell as filler material in jute epoxy composite,” Ch. In: Advances in Materials and Manufacturing Engineering, Springer, 607-615 (2020). M. Kumar, H. Jena, B. Surekha, and S. Sahoo, “Study of mechanical property of cenosphere and clamshell as filler material in jute epoxy composite,” Ch. In: Advances in Materials and Manufacturing Engineering, Springer, 607-615 (2020).
177.
go back to reference Z. Mahboob and H. Bougherara, “Fatigue of flax-epoxy and other plant fibre composites: Critical review and analysis,” Compos., Part A, Appl. Sci. Manuf., 109, 440-462 (2018). Z. Mahboob and H. Bougherara, “Fatigue of flax-epoxy and other plant fibre composites: Critical review and analysis,” Compos., Part A, Appl. Sci. Manuf., 109, 440-462 (2018).
178.
go back to reference D. U. Shah, P. J. Schubel, M. J. Clifford, and P. Licence, “Fatigue life evaluation of aligned plant fibre composites through S — N curves and constant-life diagrams,” Compos. Sci. Technol., 74, 139-149 (2013).CrossRef D. U. Shah, P. J. Schubel, M. J. Clifford, and P. Licence, “Fatigue life evaluation of aligned plant fibre composites through S — N curves and constant-life diagrams,” Compos. Sci. Technol., 74, 139-149 (2013).CrossRef
179.
go back to reference F. K. Sodoke, L. Toubal, and L. Laperrière, “Hygrothermal effects on fatigue behavior of quasi-isotropic flax/epoxy composites using principal component analysis,” J. Mater. Sci., 51, No. 24, 10793-10805 (2016).CrossRef F. K. Sodoke, L. Toubal, and L. Laperrière, “Hygrothermal effects on fatigue behavior of quasi-isotropic flax/epoxy composites using principal component analysis,” J. Mater. Sci., 51, No. 24, 10793-10805 (2016).CrossRef
180.
go back to reference I. El Sawi, Z. Fawaz, R. Zitoune, and H. Bougherara, “An investigation of the damage mechanisms and fatigue life diagrams of flax fiber-reinforced polymer laminates,” J. Mater. Sci., 49, No. 5, 2338-2346 (2014).CrossRef I. El Sawi, Z. Fawaz, R. Zitoune, and H. Bougherara, “An investigation of the damage mechanisms and fatigue life diagrams of flax fiber-reinforced polymer laminates,” J. Mater. Sci., 49, No. 5, 2338-2346 (2014).CrossRef
181.
go back to reference A. N. Towo and M. P. Ansell, “Fatigue of sisal fibre reinforced composites: Constant-life diagrams and hysteresis loop capture,” Compos. Sci. Technol., 68, Nos. 3-4, 915-924 (2008).CrossRef A. N. Towo and M. P. Ansell, “Fatigue of sisal fibre reinforced composites: Constant-life diagrams and hysteresis loop capture,” Compos. Sci. Technol., 68, Nos. 3-4, 915-924 (2008).CrossRef
182.
go back to reference D. Y. Gao, W. X. Yao, W. D. Wen, and J. Huang, “Equivalent spectral method to estimate the fatigue life of composite laminates under random vibration loadings,” Mech. Compos. Mater., 57, No. 1, 101-114 (2021).CrossRef D. Y. Gao, W. X. Yao, W. D. Wen, and J. Huang, “Equivalent spectral method to estimate the fatigue life of composite laminates under random vibration loadings,” Mech. Compos. Mater., 57, No. 1, 101-114 (2021).CrossRef
183.
go back to reference S. Siengchin and S. Wongmanee, “Mechanical and impact properties of PLA/2× 2 twill and 4× 4 hopsack weave flax textile composites produced by the interval hot Pressing technique,” Mech. Compos. Mater., 50, No. 3, 387-394 (2014).CrossRef S. Siengchin and S. Wongmanee, “Mechanical and impact properties of PLA/2× 2 twill and 4× 4 hopsack weave flax textile composites produced by the interval hot Pressing technique,” Mech. Compos. Mater., 50, No. 3, 387-394 (2014).CrossRef
184.
go back to reference M. Chandrasekar, M. R. Ishak, M. Jawaid, S. M. Sapuan, and Z. Leman, “Low velocity impact properties of natural fiber-reinforced composite materials for aeronautical applications,” Ch. In: Sustainable Composites for Aerospace Applications, Elsevier, 293-313 (2018). M. Chandrasekar, M. R. Ishak, M. Jawaid, S. M. Sapuan, and Z. Leman, “Low velocity impact properties of natural fiber-reinforced composite materials for aeronautical applications,” Ch. In: Sustainable Composites for Aerospace Applications, Elsevier, 293-313 (2018).
185.
go back to reference A. Wang, X. Wang, and G. Xian, “Mechanical, low-velocity impact, and hydrothermal aging properties of flax/carbon hybrid composite plates,” Polym. Test., 90, 106759 (2020).CrossRef A. Wang, X. Wang, and G. Xian, “Mechanical, low-velocity impact, and hydrothermal aging properties of flax/carbon hybrid composite plates,” Polym. Test., 90, 106759 (2020).CrossRef
186.
go back to reference A. A. R. Soto, J. L. V. Rivera, L. M. S. A. Borges, and J. E. P. Ruiz, “Tensile, impact, and thermal properties of an epoxynovolac matrix composites with cuban henequen fibers,” Mech. Compos. Mater., 54, No. 3, 341-348 (2018).CrossRef A. A. R. Soto, J. L. V. Rivera, L. M. S. A. Borges, and J. E. P. Ruiz, “Tensile, impact, and thermal properties of an epoxynovolac matrix composites with cuban henequen fibers,” Mech. Compos. Mater., 54, No. 3, 341-348 (2018).CrossRef
187.
go back to reference C. Militello, F. Bongiorno, G. Epasto, and B. Zuccarello, “Low-velocity impact behavior of green epoxy biocomposite laminates reinforced by sisal fibers,” Compos. Struct., 253, 112744 (2020).CrossRef C. Militello, F. Bongiorno, G. Epasto, and B. Zuccarello, “Low-velocity impact behavior of green epoxy biocomposite laminates reinforced by sisal fibers,” Compos. Struct., 253, 112744 (2020).CrossRef
188.
go back to reference F. Sarasini et al., “Drop-weight impact behavior of woven hybrid basalt-carbon/epoxy composites,” Compos., Part B Eng., 59, 204-220 (2014).CrossRef F. Sarasini et al., “Drop-weight impact behavior of woven hybrid basalt-carbon/epoxy composites,” Compos., Part B Eng., 59, 204-220 (2014).CrossRef
189.
go back to reference G. Caprino, L. Carrino, M. Durante, A. Langella, and V. Lopresto, “Low impact behavior of hemp fibre reinforced epoxy composites,” Compos. Struct., 133, 892-901 (2015).CrossRef G. Caprino, L. Carrino, M. Durante, A. Langella, and V. Lopresto, “Low impact behavior of hemp fibre reinforced epoxy composites,” Compos. Struct., 133, 892-901 (2015).CrossRef
190.
go back to reference H. N. Dhakal, Z. Y. Zhang, M. O. W. Richardson, and O. A. Z. Errajhi, “The low velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites,” Compos. Struct., 81, No. 4, 559-567 (2007).CrossRef H. N. Dhakal, Z. Y. Zhang, M. O. W. Richardson, and O. A. Z. Errajhi, “The low velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites,” Compos. Struct., 81, No. 4, 559-567 (2007).CrossRef
191.
go back to reference M. Feldmann and F. Verheyen, “Impact behavior of continuous biaxial reinforced composites based on bio-polyamides and man-made cellulose fibres,” Int. Polym. Process., 31, No. 2, 198-206 (2016).CrossRef M. Feldmann and F. Verheyen, “Impact behavior of continuous biaxial reinforced composites based on bio-polyamides and man-made cellulose fibres,” Int. Polym. Process., 31, No. 2, 198-206 (2016).CrossRef
192.
go back to reference F. Sarasini et al., “Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact,” Compos., Part B Eng., 91, 144-153 (2016).CrossRef F. Sarasini et al., “Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact,” Compos., Part B Eng., 91, 144-153 (2016).CrossRef
193.
go back to reference I. Živković, C. Fragassa, A. Pavlović, and T. Brugo, “Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites,” Compos., Part B, Eng., 111, 148-164 (2017).CrossRef I. Živković, C. Fragassa, A. Pavlović, and T. Brugo, “Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites,” Compos., Part B, Eng., 111, 148-164 (2017).CrossRef
194.
go back to reference C. Fragassa, A. Pavlovic, and C. Santulli, “Mechanical and impact characterisation of flax and basalt fibre vinylester composites and their hybrids,” Compos., Part B, Eng., 137, 247-259 (2018).CrossRef C. Fragassa, A. Pavlovic, and C. Santulli, “Mechanical and impact characterisation of flax and basalt fibre vinylester composites and their hybrids,” Compos., Part B, Eng., 137, 247-259 (2018).CrossRef
195.
go back to reference K. S. Ahmed, S. Vijayarangan, and A. Kumar, “Low velocity impact damage characterization of woven jute—glass fabric reinforced isothalic polyester hybrid composites,” J. Reinf. Plast. Compos., 26, No. 10, 959-976 (2007).CrossRef K. S. Ahmed, S. Vijayarangan, and A. Kumar, “Low velocity impact damage characterization of woven jute—glass fabric reinforced isothalic polyester hybrid composites,” J. Reinf. Plast. Compos., 26, No. 10, 959-976 (2007).CrossRef
196.
go back to reference N. M. Nurazzi et al., “A review on natural-fiber-reinforced polymer composite for bullet proof and ballistic applications,” Polymers (Basel), 13, No. 4, 646 (2021).CrossRef N. M. Nurazzi et al., “A review on natural-fiber-reinforced polymer composite for bullet proof and ballistic applications,” Polymers (Basel), 13, No. 4, 646 (2021).CrossRef
197.
go back to reference F. de O. Braga, L. T. Bolzan, F. J. H. T. V. Ramos, S. N. Monteiro, É. P. Lima, and L. C. da Silva, “Ballistic efficiency of multilayered armor systems with sisal fiber polyester composites,” Mater. Res., 20, 767-774 (2018). F. de O. Braga, L. T. Bolzan, F. J. H. T. V. Ramos, S. N. Monteiro, É. P. Lima, and L. C. da Silva, “Ballistic efficiency of multilayered armor systems with sisal fiber polyester composites,” Mater. Res., 20, 767-774 (2018).
198.
go back to reference F. S. da Luz, F. da C. Garcia Filho, M. S. Oliveira, L. F. C. Nascimento, and S. N. Monteiro, “Composites with natural fibers and conventional materials applied in a hard armor: A comparison,” Polymers (Basel), 12, No. 9, 1920 (2020). F. S. da Luz, F. da C. Garcia Filho, M. S. Oliveira, L. F. C. Nascimento, and S. N. Monteiro, “Composites with natural fibers and conventional materials applied in a hard armor: A comparison,” Polymers (Basel), 12, No. 9, 1920 (2020).
199.
go back to reference H. Daoud, A. El Mahi, J.-L. Rebiere, M. Taktak, and M. Haddar, “Characterization of the vibrational behavior of flax fibre reinforced composites with an interleaved natural viscoelastic layer,” Appl. Acoust., 128, 23-31 (2017).CrossRef H. Daoud, A. El Mahi, J.-L. Rebiere, M. Taktak, and M. Haddar, “Characterization of the vibrational behavior of flax fibre reinforced composites with an interleaved natural viscoelastic layer,” Appl. Acoust., 128, 23-31 (2017).CrossRef
200.
go back to reference K. S. Kumar, I. Siva, N. Rajini, J. T. W. Jappes, and S. C. Amico, “Layering pattern effects on vibrational behavior of coconut sheath/banana fiber hybrid composites,” Mater. Des., 90, 795-803 (2016).CrossRef K. S. Kumar, I. Siva, N. Rajini, J. T. W. Jappes, and S. C. Amico, “Layering pattern effects on vibrational behavior of coconut sheath/banana fiber hybrid composites,” Mater. Des., 90, 795-803 (2016).CrossRef
201.
go back to reference C. K. Arvinda Pandian and H. Siddhi Jailani, “Dynamic and vibrational characterization of natural fabrics incorporated hybrid composites using industrial waste silica fumes,” Int. J. Polym. Anal. Charact., 24, No. 8, 721-730 (2019).CrossRef C. K. Arvinda Pandian and H. Siddhi Jailani, “Dynamic and vibrational characterization of natural fabrics incorporated hybrid composites using industrial waste silica fumes,” Int. J. Polym. Anal. Charact., 24, No. 8, 721-730 (2019).CrossRef
202.
go back to reference Y. S. Munde, R. B. Ingle, and I. Siva, “Investigation to appraise the vibration and damping characteristics of coir fibre reinforced polypropylene composites,” Adv. Mater. Process. Technol., 4, No. 4, 639-650 (2018). Y. S. Munde, R. B. Ingle, and I. Siva, “Investigation to appraise the vibration and damping characteristics of coir fibre reinforced polypropylene composites,” Adv. Mater. Process. Technol., 4, No. 4, 639-650 (2018).
203.
go back to reference N. Saba, M. Jawaid, O. Y. Alothman, and M. T. Paridah, “A review on dynamic mechanical properties of natural fibre reinforced polymer composites,” Constr. Build. Mater., 106, 149-159 (2016).CrossRef N. Saba, M. Jawaid, O. Y. Alothman, and M. T. Paridah, “A review on dynamic mechanical properties of natural fibre reinforced polymer composites,” Constr. Build. Mater., 106, 149-159 (2016).CrossRef
204.
go back to reference M. A. A. Ahmad, M. S. A. Majid, M. J. M. Ridzuan, M. N. Mazlee, and A. G. Gibson, “Dynamic mechanical analysis and effects of moisture on mechanical properties of interwoven hemp/polyethylene terephthalate (PET) hybrid composites,” Constr. Build. Mater., 179, 265-276 (2018).CrossRef M. A. A. Ahmad, M. S. A. Majid, M. J. M. Ridzuan, M. N. Mazlee, and A. G. Gibson, “Dynamic mechanical analysis and effects of moisture on mechanical properties of interwoven hemp/polyethylene terephthalate (PET) hybrid composites,” Constr. Build. Mater., 179, 265-276 (2018).CrossRef
206.
go back to reference P. Sahu and M. K. Gupta, “Dynamic mechanical properties of a biocomposite reinforced with sodiumbicarbonate-treated sisal fibers at different frequencies,” Mech. Compos. Mater., 57, No. 1, 81-90 (2021).CrossRef P. Sahu and M. K. Gupta, “Dynamic mechanical properties of a biocomposite reinforced with sodiumbicarbonate-treated sisal fibers at different frequencies,” Mech. Compos. Mater., 57, No. 1, 81-90 (2021).CrossRef
207.
go back to reference N. Saba and M. Jawaid, “A review on thermomechanical properties of polymers and fibers reinforced polymer composites,” J. Ind. Eng. Chem., 67, 1-11 (2018).CrossRef N. Saba and M. Jawaid, “A review on thermomechanical properties of polymers and fibers reinforced polymer composites,” J. Ind. Eng. Chem., 67, 1-11 (2018).CrossRef
208.
go back to reference A. Espert, W. Camacho, and S. Karlson, “Thermal and thermomechanical properties of biocomposites made from modified recycled cellulose and recycled polypropylene,” J. Appl. Polym. Sci., 89, No. 9, 2353-2360 (2003).CrossRef A. Espert, W. Camacho, and S. Karlson, “Thermal and thermomechanical properties of biocomposites made from modified recycled cellulose and recycled polypropylene,” J. Appl. Polym. Sci., 89, No. 9, 2353-2360 (2003).CrossRef
209.
go back to reference K. M. F. Hasan, P. G. Horváth, Z. Kóczán, and T. Alpár, “Thermo-mechanical properties of pretreated coir fiber and fibrous chips reinforced multilayered composites,” Sci. Rep., 11, No. 1, 1-13 (2021).CrossRef K. M. F. Hasan, P. G. Horváth, Z. Kóczán, and T. Alpár, “Thermo-mechanical properties of pretreated coir fiber and fibrous chips reinforced multilayered composites,” Sci. Rep., 11, No. 1, 1-13 (2021).CrossRef
210.
go back to reference L. Aliotta, V. Gigante, M.-B. Coltelli, P. Cinelli, A. Lazzeri, and M. Seggiani, “Thermo-mechanical properties of PLA/ short flax fiber biocomposites,” Appl. Sci., 9, No. 18, 3797 (2019). L. Aliotta, V. Gigante, M.-B. Coltelli, P. Cinelli, A. Lazzeri, and M. Seggiani, “Thermo-mechanical properties of PLA/ short flax fiber biocomposites,” Appl. Sci., 9, No. 18, 3797 (2019).
211.
go back to reference V. A. Alvarez, J. M. Kenny, and A. Vázquez, “Creep behavior of biocomposites based on sisal fiber reinforced cellulose derivatives/starch blends,” Polym. Compos., 25, No. 3, 280-288 (2004).CrossRef V. A. Alvarez, J. M. Kenny, and A. Vázquez, “Creep behavior of biocomposites based on sisal fiber reinforced cellulose derivatives/starch blends,” Polym. Compos., 25, No. 3, 280-288 (2004).CrossRef
212.
go back to reference A. Anand, P. Banerjee, R. K. Prusty, and B. C. Ray, “Lifetime prediction of nano-silica based glass fibre/epoxy composite by time temperature superposition principle,” in IOP Conference Series: Materials Science and Engineering, 338, No. 1, 12020 (2018). A. Anand, P. Banerjee, R. K. Prusty, and B. C. Ray, “Lifetime prediction of nano-silica based glass fibre/epoxy composite by time temperature superposition principle,” in IOP Conference Series: Materials Science and Engineering, 338, No. 1, 12020 (2018).
213.
go back to reference L. W. McKeen, The effect of Creep and Other Time Related Factors on Plastics and Elastomers,” Elsevier (2009). L. W. McKeen, The effect of Creep and Other Time Related Factors on Plastics and Elastomers,” Elsevier (2009).
214.
215.
go back to reference B. Sala, X. Gabrion, F. Trivaudey, V. Guicheret-Retel, and V. Placet, “Influence of the stress level and hygrothermal conditions on the creep/recovery behavior of high-grade flax and hemp fibre reinforced GreenPoxy matrix composites,” Compos., Part A, Appl. Sci. Manuf., 141, 106204 (2021). B. Sala, X. Gabrion, F. Trivaudey, V. Guicheret-Retel, and V. Placet, “Influence of the stress level and hygrothermal conditions on the creep/recovery behavior of high-grade flax and hemp fibre reinforced GreenPoxy matrix composites,” Compos., Part A, Appl. Sci. Manuf., 141, 106204 (2021).
216.
go back to reference C. Stochioiu, H.-M. Gheorghiu, and A. Flavia-Petruta-Georgiana, “Visco-elastoplastic Characterization of a Flax-fiber Reinforced Biocomposite,” Mater. Plast., 58, No. 1, 78-84 (2021).CrossRef C. Stochioiu, H.-M. Gheorghiu, and A. Flavia-Petruta-Georgiana, “Visco-elastoplastic Characterization of a Flax-fiber Reinforced Biocomposite,” Mater. Plast., 58, No. 1, 78-84 (2021).CrossRef
217.
go back to reference I. B. da Silva Junior, L. M. S. de Souza, and F. de Andrade Silva, “Creep of pre-cracked sisal fiber reinforced cement based composites,” Constr. Build. Mater., 293, 123511 (2021).CrossRef I. B. da Silva Junior, L. M. S. de Souza, and F. de Andrade Silva, “Creep of pre-cracked sisal fiber reinforced cement based composites,” Constr. Build. Mater., 293, 123511 (2021).CrossRef
218.
go back to reference T.-C. Yang, T.-L. Wu, K.-C. Hung, Y.-L. Chen, and J.-H. Wu, “Mechanical properties and extended creep behavior of bamboo fiber reinforced recycled poly (lactic acid) composites using the time-temperature superposition principle,” Constr. Build. Mater., 93, 558-563 (2015).CrossRef T.-C. Yang, T.-L. Wu, K.-C. Hung, Y.-L. Chen, and J.-H. Wu, “Mechanical properties and extended creep behavior of bamboo fiber reinforced recycled poly (lactic acid) composites using the time-temperature superposition principle,” Constr. Build. Mater., 93, 558-563 (2015).CrossRef
219.
go back to reference M. R. M. Asyraf, M. R. Ishak, S. M. Sapuan, and N. Yidris, “Conceptual design of multi-operation outdoor flexural creep test rig using hybrid concurrent engineering approach,” J. Mater. Res. Technol., 9, No. 2, 2357-2368 (2020).CrossRef M. R. M. Asyraf, M. R. Ishak, S. M. Sapuan, and N. Yidris, “Conceptual design of multi-operation outdoor flexural creep test rig using hybrid concurrent engineering approach,” J. Mater. Res. Technol., 9, No. 2, 2357-2368 (2020).CrossRef
220.
go back to reference A. Hamma, M. Kaci, Z. A. M. Ishak, and A. Pegoretti, “Starch-grafted-polypropylene/kenaf fibres composites. Part 1: Mechanical performances and viscoelastic behavior,” Compos., Part A, Appl. Sci. Manuf., 56, 328-335 (2014). A. Hamma, M. Kaci, Z. A. M. Ishak, and A. Pegoretti, “Starch-grafted-polypropylene/kenaf fibres composites. Part 1: Mechanical performances and viscoelastic behavior,” Compos., Part A, Appl. Sci. Manuf., 56, 328-335 (2014).
221.
go back to reference S. Siengchin, “Reinforced flax mat/modified polylactide (PLA) composites: impact, thermal, and mechanical properties,” Mech. Compos. Mater., 50, No. 2, 257-266 (2014).CrossRef S. Siengchin, “Reinforced flax mat/modified polylactide (PLA) composites: impact, thermal, and mechanical properties,” Mech. Compos. Mater., 50, No. 2, 257-266 (2014).CrossRef
222.
go back to reference M. Durante, A. Formisano, L. Boccarusso, A. Langella, and L. Carrino, “Creep behavior of polylactic acid reinforced by woven hemp fabric,” Compos., Part B, Eng., 124, 16-22 (2017).CrossRef M. Durante, A. Formisano, L. Boccarusso, A. Langella, and L. Carrino, “Creep behavior of polylactic acid reinforced by woven hemp fabric,” Compos., Part B, Eng., 124, 16-22 (2017).CrossRef
223.
go back to reference S. P. Dwivedi, A. Dixit, and R. Bajaj, “Development of bio-composite material by utilizing chrome containing leather waste with Al2O3 ceramic particles,” Mater. Res. Express, 6, No. 10, 105105 (2019). S. P. Dwivedi, A. Dixit, and R. Bajaj, “Development of bio-composite material by utilizing chrome containing leather waste with Al2O3 ceramic particles,” Mater. Res. Express, 6, No. 10, 105105 (2019).
224.
go back to reference V. Fiore, T. Scalici, and A. Valenza, “Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites,” Carbohydr. Polym., 106, No. 1, 77-83 (2014).CrossRef V. Fiore, T. Scalici, and A. Valenza, “Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites,” Carbohydr. Polym., 106, No. 1, 77-83 (2014).CrossRef
225.
go back to reference M. Ramesh, K. Palanikumar, and K. H. Reddy, “Mechanical property evaluation of sisal-jute-glass fiber reinforced polyester composites,” Compos., Part B, Eng., 48, 1-9 (2013).CrossRef M. Ramesh, K. Palanikumar, and K. H. Reddy, “Mechanical property evaluation of sisal-jute-glass fiber reinforced polyester composites,” Compos., Part B, Eng., 48, 1-9 (2013).CrossRef
226.
go back to reference K. R. Sumesh, K. Kanthavel, and V. Kavimani, “Peanut oil cake-derived cellulose fiber: Extraction, application of mechanical and thermal properties in pineapple/flax natural-fiber composites,” Int. J. Biol. Macromol., 150, 775-785 (2020).CrossRef K. R. Sumesh, K. Kanthavel, and V. Kavimani, “Peanut oil cake-derived cellulose fiber: Extraction, application of mechanical and thermal properties in pineapple/flax natural-fiber composites,” Int. J. Biol. Macromol., 150, 775-785 (2020).CrossRef
227.
go back to reference K. Liu, H. Takagi, R. Osugi, and Z. Yang, “Effect of lumen size on the effective transverse thermal conductivity of unidirectional natural-fiber composites,” Compos. Sci. Technol., 72, No. 5, 633-639 (2012).CrossRef K. Liu, H. Takagi, R. Osugi, and Z. Yang, “Effect of lumen size on the effective transverse thermal conductivity of unidirectional natural-fiber composites,” Compos. Sci. Technol., 72, No. 5, 633-639 (2012).CrossRef
228.
go back to reference A. W. Coats and J. P. Redfern, “Thermogravimetric analysis. A review,” Analyst, 88, No. 1053, 906-924 (1963).CrossRef A. W. Coats and J. P. Redfern, “Thermogravimetric analysis. A review,” Analyst, 88, No. 1053, 906-924 (1963).CrossRef
229.
go back to reference A. Elkhaoulani, F. Z. Arrakhiz, K. Benmoussa, R. Bouhfid, and A. Qaiss, “Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene,” Mater. Des., 49, 203-208 (2013).CrossRef A. Elkhaoulani, F. Z. Arrakhiz, K. Benmoussa, R. Bouhfid, and A. Qaiss, “Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene,” Mater. Des., 49, 203-208 (2013).CrossRef
230.
go back to reference O. Nestore, J. Kajaks, I. Vancovicha, and S. Reihmane, “Physical and mechanical properties of composites based on a linear low-density polyethylene (LLDPE) and natural fiber waste,” Mech. Compos. Mater., 48, No. 6, 619-628 (2013).CrossRef O. Nestore, J. Kajaks, I. Vancovicha, and S. Reihmane, “Physical and mechanical properties of composites based on a linear low-density polyethylene (LLDPE) and natural fiber waste,” Mech. Compos. Mater., 48, No. 6, 619-628 (2013).CrossRef
231.
go back to reference N. Johri, R. Mishra, and H. Thakur, “Synthesis and characterization of jute-and chicken-feather-fiber-reinforced polymer hybrid composites,” Mech. Compos. Mater., 54, No. 6, 821-832 (2019).CrossRef N. Johri, R. Mishra, and H. Thakur, “Synthesis and characterization of jute-and chicken-feather-fiber-reinforced polymer hybrid composites,” Mech. Compos. Mater., 54, No. 6, 821-832 (2019).CrossRef
232.
go back to reference J. Gironès, J. P. López, P. Mutjé, A. J. F. Carvalho, A. A. S. Curvelo, and F. Vilaseca, “Natural fiber-reinforced thermoplastic starch composites obtained by melt processing,” Compos. Sci. Technol., 72, No. 7, 858-863 (2012).CrossRef J. Gironès, J. P. López, P. Mutjé, A. J. F. Carvalho, A. A. S. Curvelo, and F. Vilaseca, “Natural fiber-reinforced thermoplastic starch composites obtained by melt processing,” Compos. Sci. Technol., 72, No. 7, 858-863 (2012).CrossRef
233.
go back to reference J. Modniks, E. Poriķe, J. Andersons, and R. Joffe, “Evaluation of the apparent interfacial shear strength in short-flaxfiber/ PP composites,” Mech. Compos. Mater., 48, No. 5, 571-578 (2012).CrossRef J. Modniks, E. Poriķe, J. Andersons, and R. Joffe, “Evaluation of the apparent interfacial shear strength in short-flaxfiber/ PP composites,” Mech. Compos. Mater., 48, No. 5, 571-578 (2012).CrossRef
234.
go back to reference Z. H. Xu and Z. N. Kong, “Mechanical and thermal properties of short-coirfiber-reinforced natural rubber/polyethylene composites,” Mech. Compos. Mater., 50, No. 3, 353-358 (2014).CrossRef Z. H. Xu and Z. N. Kong, “Mechanical and thermal properties of short-coirfiber-reinforced natural rubber/polyethylene composites,” Mech. Compos. Mater., 50, No. 3, 353-358 (2014).CrossRef
235.
go back to reference B. Baghaei, M. Skrifvars, and L. Berglin, “Characterization of thermoplastic natural fibre composites made from woven hybrid yarn prepregs with different weave pattern,” Compos., Part A, Appl. Sci. Manuf., 76, 154-161 (2015). B. Baghaei, M. Skrifvars, and L. Berglin, “Characterization of thermoplastic natural fibre composites made from woven hybrid yarn prepregs with different weave pattern,” Compos., Part A, Appl. Sci. Manuf., 76, 154-161 (2015).
236.
go back to reference Y. Dobah, M. Bourchak, A. Bezazi, A. Belaadi, and F. Scarpa, “Multi-axial mechanical characterization of jute fiber/ polyester composite materials,” Compos., Part B, Eng., 90, 450-456 (2016).CrossRef Y. Dobah, M. Bourchak, A. Bezazi, A. Belaadi, and F. Scarpa, “Multi-axial mechanical characterization of jute fiber/ polyester composite materials,” Compos., Part B, Eng., 90, 450-456 (2016).CrossRef
237.
go back to reference M. Jawaid, H. P. S. Abdul Khalil, and A. Abu Bakar, “Woven hybrid composites: Tensile and flexural properties of oil palm-woven jute fibres based epoxy composites,” Mater. Sci. Eng. A, 528, No. 15, 5190-5195 (2011).CrossRef M. Jawaid, H. P. S. Abdul Khalil, and A. Abu Bakar, “Woven hybrid composites: Tensile and flexural properties of oil palm-woven jute fibres based epoxy composites,” Mater. Sci. Eng. A, 528, No. 15, 5190-5195 (2011).CrossRef
238.
go back to reference A. C. Milanese, M. O. H. Cioffi, H. Jacobus, and C. Voorwald, “Mechanical behavior of natural-fiber composites,” Procedia Eng., 10, 2022-2027 (2011).CrossRef A. C. Milanese, M. O. H. Cioffi, H. Jacobus, and C. Voorwald, “Mechanical behavior of natural-fiber composites,” Procedia Eng., 10, 2022-2027 (2011).CrossRef
239.
go back to reference J. Song, S. Mun, and C. Kim, “Mechanical properties of sisal natural-fiber composites according to strain rate and absorption ratio,” Polym. Compos., 32, No. 8, 1174-1180 (2011).CrossRef J. Song, S. Mun, and C. Kim, “Mechanical properties of sisal natural-fiber composites according to strain rate and absorption ratio,” Polym. Compos., 32, No. 8, 1174-1180 (2011).CrossRef
240.
go back to reference M. A. Martins, J. D. C. Pessoa, P. S. Gonçalves, F. I. Souza, and L. H. C. Mattoso, “Thermal and mechanical properties of the açaí fiber/natural rubber composites,” J. Mater. Sci., 43, No. 19, 6531-6538 (2008).CrossRef M. A. Martins, J. D. C. Pessoa, P. S. Gonçalves, F. I. Souza, and L. H. C. Mattoso, “Thermal and mechanical properties of the açaí fiber/natural rubber composites,” J. Mater. Sci., 43, No. 19, 6531-6538 (2008).CrossRef
241.
go back to reference S. C. Chin, K. F. Tee, F. S. Tong, H. R. Ong, and J. Gimbun, “Thermal and mechanical properties of bamboo fiber reinforced composites,” Mater. Today Commun., 23, No. September 2019, 100876 (2020). S. C. Chin, K. F. Tee, F. S. Tong, H. R. Ong, and J. Gimbun, “Thermal and mechanical properties of bamboo fiber reinforced composites,” Mater. Today Commun., 23, No. September 2019, 100876 (2020).
242.
go back to reference M. R. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep, “Characterization and properties of natural fiber polymer composites: A comprehensive review,” Journal of Cleaner Production, 172, 566-581 (2018).CrossRef M. R. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep, “Characterization and properties of natural fiber polymer composites: A comprehensive review,” Journal of Cleaner Production, 172, 566-581 (2018).CrossRef
243.
go back to reference M. Wróbel-Kwiatkowska, M. Kropiwnicki, and W. Rymowicz, “Green biodegradable composites based on natural fibers,” In: V. Thakur, M. Thakur, and M. Kessel (eds.), Handbook of Composites from Renewable Materials, Scrivener Publ. LLC (2017). 283-301 M. Wróbel-Kwiatkowska, M. Kropiwnicki, and W. Rymowicz, “Green biodegradable composites based on natural fibers,” In: V. Thakur, M. Thakur, and M. Kessel (eds.), Handbook of Composites from Renewable Materials, Scrivener Publ. LLC (2017). 283-301
244.
go back to reference A. Samariha, A. Bastani, M. Nemati, M. Kiaei, H. Nosrati, and M. Farsi, “Investigation of the mechanical properties of bagasse flour/polypropylene composites,” Mech. Compos. Mater., 49, No. 4, 447-454 (2013).CrossRef A. Samariha, A. Bastani, M. Nemati, M. Kiaei, H. Nosrati, and M. Farsi, “Investigation of the mechanical properties of bagasse flour/polypropylene composites,” Mech. Compos. Mater., 49, No. 4, 447-454 (2013).CrossRef
245.
go back to reference S. Panthapulakkal and M. Sain, “Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites — Mechanical, water absorption and thermal properties,” J. Appl. Polym. Sci., 103, No. 4, 2432-2441 (2007).CrossRef S. Panthapulakkal and M. Sain, “Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites — Mechanical, water absorption and thermal properties,” J. Appl. Polym. Sci., 103, No. 4, 2432-2441 (2007).CrossRef
247.
go back to reference D. Chukov, S. Nematulloev, M. Zadorozhnyy, V. Tcherdyntsev, A. Stepashkin, and D. Zherebtsov, “Structure, mechanical and thermal properties of polyphenylene sulfide and polysulfone impregnated carbon fiber composites,” Polymers (Basel), 11, No. 4, 684 (2019). D. Chukov, S. Nematulloev, M. Zadorozhnyy, V. Tcherdyntsev, A. Stepashkin, and D. Zherebtsov, “Structure, mechanical and thermal properties of polyphenylene sulfide and polysulfone impregnated carbon fiber composites,” Polymers (Basel), 11, No. 4, 684 (2019).
248.
go back to reference M. M. Zagho, E. A. Hussein, and A. A. Elzatahry, “Recent overviews in functional polymer composites for biomedical applications,” Polymers (Basel), 10, No. 7, 739 (2018). M. M. Zagho, E. A. Hussein, and A. A. Elzatahry, “Recent overviews in functional polymer composites for biomedical applications,” Polymers (Basel), 10, No. 7, 739 (2018).
249.
go back to reference R. Scaffaro, A. Maio, and F. Lopresti, “Physical properties of green composites based on poly-lactic acid or Mater-Bi® filled with Posidonia Oceanica leaves,” Compos., Part A, Appl. Sci. Manuf., 112, 315-327 (2018). R. Scaffaro, A. Maio, and F. Lopresti, “Physical properties of green composites based on poly-lactic acid or Mater-Bi® filled with Posidonia Oceanica leaves,” Compos., Part A, Appl. Sci. Manuf., 112, 315-327 (2018).
250.
go back to reference E. Linul, C. Vălean, and P.-A. Linul, “Compressive behavior of aluminum microfibers reinforced semi-rigid polyurethane foams,” Polymers (Basel), 10, No. 12, 1298 (2018). E. Linul, C. Vălean, and P.-A. Linul, “Compressive behavior of aluminum microfibers reinforced semi-rigid polyurethane foams,” Polymers (Basel), 10, No. 12, 1298 (2018).
251.
go back to reference D. Chukov, S. Nematulloev, V. Torokhov, A. Stepashkin, G. Sherif, and V. Tcherdyntsev, “Effect of carbon fiber surface modification on their interfacial interaction with polysulfone,” Results Phys., 15, 102634 (2019).CrossRef D. Chukov, S. Nematulloev, V. Torokhov, A. Stepashkin, G. Sherif, and V. Tcherdyntsev, “Effect of carbon fiber surface modification on their interfacial interaction with polysulfone,” Results Phys., 15, 102634 (2019).CrossRef
Metadata
Title
Advances in Natural-Fiber-Reinforced Composites: A Topical Review
Authors
H. Prajapati
A. Tevatia
A. Dixit
Publication date
18-07-2022
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 3/2022
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-10033-2

Other articles of this Issue 3/2022

Mechanics of Composite Materials 3/2022 Go to the issue

Premium Partners