Skip to main content
Top
Published in:

01-12-2023 | Original Article

Advancing aspect-based sentiment analysis with a novel architecture combining deep learning models CNN and bi-RNN with the machine learning model SVM

Authors: Sarsabene Hammi, Souha Mezghani Hammami, Lamia Hadrich Belguith

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Over the last decades, the aspect-based sentiment analysis (ABSA) task has been given great attention and has been deeply studied by the scientific community. It was first introduced in 2002 to extract the users’ fine-grained sentiments from textual data by focusing on aspect terms. In this paper, we propose a machine learning-based architecture called CBRS (CNN-Bi-RNN-SVM) to enhance the ABSA of smartphone reviews. This architecture combines two deep learning models [convolutional neural network (CNN) and bidirectional recurrent neural network (Bi-RNN)] with the classical machine learning model support vector machine (SVM). The CNN and the Bi-RNN models are used to capture both local features and contextual information. The SVM model is applied to classify the sentiments, expressed towards aspect terms, as positive or negative. To evaluate the performance of the developed architecture, 8,000 French smartphone reviews, extracted from the Amazon website, are annotated to create a dataset including 15,411 positive aspects and 14,627 negative aspects. The obtained findings corroborated the efficiency of the designed architecture by achieving an F-measure value of 94.05%, for the smartphone dataset, and 85.70% for the SemEval-2016 restaurant dataset. A comparative study demonstrates that the overall performance of our proposed architecture outperformed that of the existing ABSA models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akhtar MS, Kohail S, Kumar A, Ekbal A, Biemann C (2017) Feature selection using multi-objective optimization for aspect based sentiment analysis. In: Natural language processing and information systems: 22nd international conference on applications of natural language to information systems, NLDB 2017, Liège, Belgium, June 21--23, 2017, Proceedings 22, pp. 15–27. Springer Akhtar MS, Kohail S, Kumar A, Ekbal A, Biemann C (2017) Feature selection using multi-objective optimization for aspect based sentiment analysis. In: Natural language processing and information systems: 22nd international conference on applications of natural language to information systems, NLDB 2017, Liège, Belgium, June 21--23, 2017, Proceedings 22, pp. 15–27. Springer
go back to reference Akhtar MS, Kumar A, Ekbal A, Biemann C, Bhattacharyya P (2019) Language-agnostic model for aspect-based sentiment analysis. In: Proceedings of the 13th international conference on computational semantics-long papers, pp 154–164 Akhtar MS, Kumar A, Ekbal A, Biemann C, Bhattacharyya P (2019) Language-agnostic model for aspect-based sentiment analysis. In: Proceedings of the 13th international conference on computational semantics-long papers, pp 154–164
go back to reference Al-Smadi M, Al-Ayyoub M, Jararweh Y, Qawasmeh O (2019) Enhancing aspect-based sentiment analysis of arabic hotels’ reviews using morphological, syntactic and semantic features. Inf Proces Manag 56(2):308–319CrossRef Al-Smadi M, Al-Ayyoub M, Jararweh Y, Qawasmeh O (2019) Enhancing aspect-based sentiment analysis of arabic hotels’ reviews using morphological, syntactic and semantic features. Inf Proces Manag 56(2):308–319CrossRef
go back to reference AlAjlan SA, Saudagar AKJ (2021) Machine learning approach for threat detection on social media posts containing arabic text. Evol Intell 14(2):811–822CrossRef AlAjlan SA, Saudagar AKJ (2021) Machine learning approach for threat detection on social media posts containing arabic text. Evol Intell 14(2):811–822CrossRef
go back to reference Alharbi O (2021) A deep learning approach combining cnn and bi-lstm with svm classifier for arabic sentiment analysis. Int J Adv Comput Sci Appl 12(6) Alharbi O (2021) A deep learning approach combining cnn and bi-lstm with svm classifier for arabic sentiment analysis. Int J Adv Comput Sci Appl 12(6)
go back to reference Alqaryouti O, Siyam N, Abdel Monem A, Shaalan K (2020) Aspect-based sentiment analysis using smart government review data. Appl Comput Inf Alqaryouti O, Siyam N, Abdel Monem A, Shaalan K (2020) Aspect-based sentiment analysis using smart government review data. Appl Comput Inf
go back to reference Althobaiti M, Kruschwitz U, Poesio M Aranlp (2014) A java-based library for the processing of arabic text. In: Proceedings of the 9th international conference on language resources and evaluation, LREC 2014, pp 4134–4138. European Language Resources Association (ELRA) Althobaiti M, Kruschwitz U, Poesio M Aranlp (2014) A java-based library for the processing of arabic text. In: Proceedings of the 9th international conference on language resources and evaluation, LREC 2014, pp 4134–4138. European Language Resources Association (ELRA)
go back to reference Angiani G, Ferrari L, Fontanini T, Fornacciari P, Iotti E, Magliani F, Manicardi S (2016) A comparison between preprocessing techniques for sentiment analysis in twitter. In: KDWeb Angiani G, Ferrari L, Fontanini T, Fornacciari P, Iotti E, Magliani F, Manicardi S (2016) A comparison between preprocessing techniques for sentiment analysis in twitter. In: KDWeb
go back to reference Aubaid AM, Mishra A (2020) A rule-based approach to embedding techniques for text document classification. Appl Sci 10(11):4009CrossRef Aubaid AM, Mishra A (2020) A rule-based approach to embedding techniques for text document classification. Appl Sci 10(11):4009CrossRef
go back to reference Ayetiran EF (2022) Attention-based aspect sentiment classification using enhanced learning through cnn-bilstm networks. Knowl Based Syst 252:109409CrossRef Ayetiran EF (2022) Attention-based aspect sentiment classification using enhanced learning through cnn-bilstm networks. Knowl Based Syst 252:109409CrossRef
go back to reference Banjar A, Ahmed Z, Daud A, Abbasi RA, Dawood H (2021) Aspect-based sentiment analysis for polarity estimation of customer reviews on twitter. Comput Mater Continua 67(2):2203–2225CrossRef Banjar A, Ahmed Z, Daud A, Abbasi RA, Dawood H (2021) Aspect-based sentiment analysis for polarity estimation of customer reviews on twitter. Comput Mater Continua 67(2):2203–2225CrossRef
go back to reference Brauwers G, Frasincar F (2022) A survey on aspect-based sentiment classification. ACM Comput Surv 55(4):1–37CrossRef Brauwers G, Frasincar F (2022) A survey on aspect-based sentiment classification. ACM Comput Surv 55(4):1–37CrossRef
go back to reference Brun C, Perez J, Roux C (2016) Xrce at semeval-2016 task 5: Feedbacked ensemble modeling on syntactico-semantic knowledge for aspect based sentiment analysis. In: Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016), pp 277–281 Brun C, Perez J, Roux C (2016) Xrce at semeval-2016 task 5: Feedbacked ensemble modeling on syntactico-semantic knowledge for aspect based sentiment analysis. In: Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016), pp 277–281
go back to reference Brun C (2018) Transfert de ressources sémantiques pour l’analyse de sentiments au niveau des aspects. In: Actes de la Conférence Traitement Automatique de la Langue Naturelle, TALN 2018, p 547 Brun C (2018) Transfert de ressources sémantiques pour l’analyse de sentiments au niveau des aspects. In: Actes de la Conférence Traitement Automatique de la Langue Naturelle, TALN 2018, p 547
go back to reference Deligiannidis S, Mesaritakis C, Bogris A (2021) Performance and complexity analysis of bi-directional recurrent neural network models versus volterra nonlinear equalizers in digital coherent systems. J Lightwave Technol 39(18):5791–5798CrossRef Deligiannidis S, Mesaritakis C, Bogris A (2021) Performance and complexity analysis of bi-directional recurrent neural network models versus volterra nonlinear equalizers in digital coherent systems. J Lightwave Technol 39(18):5791–5798CrossRef
go back to reference Ellouze M, Hadrich L (2022) A hybrid approach for the detection and monitoring of people having personality disorders on social networks. Social Netw Anal Min 12(1):67CrossRef Ellouze M, Hadrich L (2022) A hybrid approach for the detection and monitoring of people having personality disorders on social networks. Social Netw Anal Min 12(1):67CrossRef
go back to reference Essebbar A, Kane B, Guinaudeau O, Chiesa V, Quénel I, Chau S (2021) Aspect based sentiment analysis using french pre-trained models. In: ICAART (1), pp 519–525 Essebbar A, Kane B, Guinaudeau O, Chiesa V, Quénel I, Chau S (2021) Aspect based sentiment analysis using french pre-trained models. In: ICAART (1), pp 519–525
go back to reference Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202CrossRef Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202CrossRef
go back to reference García-Pablos A, Cuadros M, Rigau G (2018) W2vlda: almost unsupervised system for aspect based sentiment analysis. Exp Syst Appl 91:127–137CrossRef García-Pablos A, Cuadros M, Rigau G (2018) W2vlda: almost unsupervised system for aspect based sentiment analysis. Exp Syst Appl 91:127–137CrossRef
go back to reference Grewal D, Roggeveen A, Sisodia R, Nordfält J (2017) Enhancing customer engagement through consciousness. J Retail 93(1):55–64CrossRef Grewal D, Roggeveen A, Sisodia R, Nordfält J (2017) Enhancing customer engagement through consciousness. J Retail 93(1):55–64CrossRef
go back to reference Hamdan H, Bellot P, Bechet F Lsislif (2015) Crf and logistic regression for opinion target extraction and sentiment polarity analysis. In: Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015), pp 753–758 Hamdan H, Bellot P, Bechet F Lsislif (2015) Crf and logistic regression for opinion target extraction and sentiment polarity analysis. In: Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015), pp 753–758
go back to reference Hammi S, Hammami SM, Belguith LH (2022) Aspect term extraction improvement based on a hybrid method. In: International symposium on methodologies for intelligent systems, pp 85–94 Springer Hammi S, Hammami SM, Belguith LH (2022) Aspect term extraction improvement based on a hybrid method. In: International symposium on methodologies for intelligent systems, pp 85–94 Springer
go back to reference Hammi S, Hammami SM, Belguith LH (2022) An improved hybrid method for sentiment analysis. In: 2022 International conference on innovations in intelligent systems and applications (INISTA), pp 1–6. IEEE Hammi S, Hammami SM, Belguith LH (2022) An improved hybrid method for sentiment analysis. In: 2022 International conference on innovations in intelligent systems and applications (INISTA), pp 1–6. IEEE
go back to reference Hidaka A, Kurita T (2017) Consecutive dimensionality reduction by canonical correlation analysis for visualization of convolutional neural networks. In: Proceedings of the ISCIE international symposium on stochastic systems theory and its applications, vol 2017, pp 160–167 Hidaka A, Kurita T (2017) Consecutive dimensionality reduction by canonical correlation analysis for visualization of convolutional neural networks. In: Proceedings of the ISCIE international symposium on stochastic systems theory and its applications, vol 2017, pp 160–167
go back to reference Hu M, Liu B (2004) Mining and summarizing customer reviews. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining, pp 168–177 Hu M, Liu B (2004) Mining and summarizing customer reviews. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining, pp 168–177
go back to reference Jagtap V, Pawar K (2013) Analysis of different approaches to sentence-level sentiment classification. Int J Sci Eng Technol 2(3):164–170 Jagtap V, Pawar K (2013) Analysis of different approaches to sentence-level sentiment classification. Int J Sci Eng Technol 2(3):164–170
go back to reference Jivani AG et al (2011) A comparative study of stemming algorithms. Int J Comp Tech Appl 2(6):1930–1938 Jivani AG et al (2011) A comparative study of stemming algorithms. Int J Comp Tech Appl 2(6):1930–1938
go back to reference Kumar A, Kohail S, Kumar A, Ekbal A, Biemann C (2016) Iit-tuda at semeval-2016 task 5: Beyond sentiment lexicon: combining domain dependency and distributional semantics features for aspect based sentiment analysis. In: Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016), pp 1129–1135 Kumar A, Kohail S, Kumar A, Ekbal A, Biemann C (2016) Iit-tuda at semeval-2016 task 5: Beyond sentiment lexicon: combining domain dependency and distributional semantics features for aspect based sentiment analysis. In: Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016), pp 1129–1135
go back to reference Liang B, Su H, Gui L, Cambria E, Xu R (2022) Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks. Knowl Based Syst 235:107643CrossRef Liang B, Su H, Gui L, Cambria E, Xu R (2022) Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks. Knowl Based Syst 235:107643CrossRef
go back to reference Liu C, Ta V, Le N, Tadesse DA, Shi C (2022) Deep neural network framework based on word embedding for protein glutarylation sites prediction. Life 12(8):1213CrossRef Liu C, Ta V, Le N, Tadesse DA, Shi C (2022) Deep neural network framework based on word embedding for protein glutarylation sites prediction. Life 12(8):1213CrossRef
go back to reference Medhat W, Hassan A, Korashy H (2014) Sentiment analysis algorithms and applications: a survey. Ain Shams Eng J 5(4):1093–1113CrossRef Medhat W, Hassan A, Korashy H (2014) Sentiment analysis algorithms and applications: a survey. Ain Shams Eng J 5(4):1093–1113CrossRef
go back to reference Moghaddam, S., Ester, M.: Opinion digger: an unsupervised opinion miner from unstructured product reviews. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 1825–1828 (2010) Moghaddam, S., Ester, M.: Opinion digger: an unsupervised opinion miner from unstructured product reviews. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 1825–1828 (2010)
go back to reference Mubarok MS, Adiwijaya A, Aldhi MD (2017) Aspect-based sentiment analysis to review products using naïve bayes. In: AIP conference proceedings, vol 1867 Mubarok MS, Adiwijaya A, Aldhi MD (2017) Aspect-based sentiment analysis to review products using naïve bayes. In: AIP conference proceedings, vol 1867
go back to reference Nasr L, Burton J, Gruber T, Kitshoff J (2014) Exploring the impact of customer feedback on the well-being of service entities: a tsr perspective. J Serv Manage 25(4):531–555CrossRef Nasr L, Burton J, Gruber T, Kitshoff J (2014) Exploring the impact of customer feedback on the well-being of service entities: a tsr perspective. J Serv Manage 25(4):531–555CrossRef
go back to reference Palomino MA, Aider F (2022) Evaluating the effectiveness of text pre-processing in sentiment analysis. Appl Sci 12(17):8765CrossRef Palomino MA, Aider F (2022) Evaluating the effectiveness of text pre-processing in sentiment analysis. Appl Sci 12(17):8765CrossRef
go back to reference Pang B, Lee L, Vaithyanathan S (2002) Thumbs up? sentiment classification using machine learning techniques. arXiv preprint cs/0205070 Pang B, Lee L, Vaithyanathan S (2002) Thumbs up? sentiment classification using machine learning techniques. arXiv preprint cs/0205070
go back to reference Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532–1543 Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532–1543
go back to reference Pigneul N, Kooli E (2018) Analyse de sentiments à base d’aspects par combinaison de réseaux profonds: application à des avis en français Pigneul N, Kooli E (2018) Analyse de sentiments à base d’aspects par combinaison de réseaux profonds: application à des avis en français
go back to reference Piryani R, Gupta V, Singh VK, Ghose U (2017) A linguistic rule-based approach for aspect-level sentiment analysis of movie reviews. In: Advances in computer and computational sciences: proceedings of ICCCCS 2016, vol 1, pp 201–209 Piryani R, Gupta V, Singh VK, Ghose U (2017) A linguistic rule-based approach for aspect-level sentiment analysis of movie reviews. In: Advances in computer and computational sciences: proceedings of ICCCCS 2016, vol 1, pp 201–209
go back to reference PontikiM, GalanisD, Papageorgiou H, Androutsopoulos I, Manandhar S, AL-Smadi M, Al-Ayyoub M, Zhao Y, Qin B, Clercq OD et al. (2016) Semeval-2016 task 5: Aspect based sentiment analysis. In: Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016), pp 19–30. Association for Computational Linguistics PontikiM, GalanisD, Papageorgiou H, Androutsopoulos I, Manandhar S, AL-Smadi M, Al-Ayyoub M, Zhao Y, Qin B, Clercq OD et al. (2016) Semeval-2016 task 5: Aspect based sentiment analysis. In: Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016), pp 19–30. Association for Computational Linguistics
go back to reference Potisuk S (2010) Typed dependency relations for syntactic analysis of thai sentences. In: Proceedings of the 24th Pacific Asia conference on language, information and computation, pp 511–518 Potisuk S (2010) Typed dependency relations for syntactic analysis of thai sentences. In: Proceedings of the 24th Pacific Asia conference on language, information and computation, pp 511–518
go back to reference Ramaswamy SL, Chinnappan J (2022) Recognet-lstm+ cnn: a hybrid network with attention mechanism for aspect categorization and sentiment classification. J Intell Inf Syst 58(2):379–404CrossRef Ramaswamy SL, Chinnappan J (2022) Recognet-lstm+ cnn: a hybrid network with attention mechanism for aspect categorization and sentiment classification. J Intell Inf Syst 58(2):379–404CrossRef
go back to reference Ray P, Chakrabarti A (2022) A mixed approach of deep learning method and rule-based method to improve aspect level sentiment analysis. Appl Comput Inf 18(1/2):163–178 Ray P, Chakrabarti A (2022) A mixed approach of deep learning method and rule-based method to improve aspect level sentiment analysis. Appl Comput Inf 18(1/2):163–178
go back to reference Rizwan A, Iqbal N, Ahmad R, Kim D (2021) Wr-svm model based on the margin radius approach for solving the minimum enclosing ball problem in support vector machine classification. Appl Sci 11(10):4657CrossRef Rizwan A, Iqbal N, Ahmad R, Kim D (2021) Wr-svm model based on the margin radius approach for solving the minimum enclosing ball problem in support vector machine classification. Appl Sci 11(10):4657CrossRef
go back to reference Ruder S, Ghaffari P, Breslin JG (2016) Insight-1 at semeval-2016 task 5: deep learning for multilingual aspect-based sentiment analysis. arXiv preprint arXiv:1609.02748 Ruder S, Ghaffari P, Breslin JG (2016) Insight-1 at semeval-2016 task 5: deep learning for multilingual aspect-based sentiment analysis. arXiv preprint arXiv:​1609.​02748
go back to reference Ruder S, Ghaffari P, Breslin JG (2016) A hierarchical model of reviews for aspect-based sentiment analysis. arXiv preprint arXiv:1609.02745 Ruder S, Ghaffari P, Breslin JG (2016) A hierarchical model of reviews for aspect-based sentiment analysis. arXiv preprint arXiv:​1609.​02745
go back to reference Sarker IH (2021) Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput Sci 2(6):420CrossRef Sarker IH (2021) Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput Sci 2(6):420CrossRef
go back to reference Straka M, Straková J (2017) Tokenizing, pos tagging, lemmatizing and parsing ud 2.0 with udpipe. In: Proceedings of the CoNLL 2017 shared task: multilingual parsing from raw text to universal dependencies, pp 88–99 Straka M, Straková J (2017) Tokenizing, pos tagging, lemmatizing and parsing ud 2.0 with udpipe. In: Proceedings of the CoNLL 2017 shared task: multilingual parsing from raw text to universal dependencies, pp 88–99
go back to reference Taye MM (2023) Understanding of machine learning with deep learning: architectures, workflow, applications and future directions. Computers 12(5):91CrossRef Taye MM (2023) Understanding of machine learning with deep learning: architectures, workflow, applications and future directions. Computers 12(5):91CrossRef
go back to reference Vanaja S, Belwal M (2018) Aspect-level sentiment analysis on e-commerce data. In: 2018 International conference on inventive research in computing applications (ICIRCA), pp 1275–1279 Vanaja S, Belwal M (2018) Aspect-level sentiment analysis on e-commerce data. In: 2018 International conference on inventive research in computing applications (ICIRCA), pp 1275–1279
go back to reference Villena RPCSL, Cristóbal J (2011) Hybrid approach combining machine learning and a rule-based expert system for text categorization. AAAI Villena RPCSL, Cristóbal J (2011) Hybrid approach combining machine learning and a rule-based expert system for text categorization. AAAI
go back to reference Wang J, Li J, Li S, Kang Y, Zhang M, SiL, Zhou G (2018) Aspect sentiment classification with both word-level and clause-level attention networks. In: IJCAI, vol 2018, pp. 4439–4445 Wang J, Li J, Li S, Kang Y, Zhang M, SiL, Zhou G (2018) Aspect sentiment classification with both word-level and clause-level attention networks. In: IJCAI, vol 2018, pp. 4439–4445
go back to reference Yan Z, Xing M, zhang D (2015) Exprs: An extended pagerank method for product feature extraction from online consumer reviews. Inf Manage 52(7) Yan Z, Xing M, zhang D (2015) Exprs: An extended pagerank method for product feature extraction from online consumer reviews. Inf Manage 52(7)
go back to reference Yao L, Mao C, Luo Y (2019) Clinical text classification with rule-based features and knowledge-guided convolutional neural networks. BMC Med Inf Decis Making 19(3):31–39 Yao L, Mao C, Luo Y (2019) Clinical text classification with rule-based features and knowledge-guided convolutional neural networks. BMC Med Inf Decis Making 19(3):31–39
go back to reference Zhao Y, Mamat M, Aysa A, Ubul K (2023) Multimodal sentiment system and method based on crnn-svm. Neural Comput App, pp 1–13 Zhao Y, Mamat M, Aysa A, Ubul K (2023) Multimodal sentiment system and method based on crnn-svm. Neural Comput App, pp 1–13
go back to reference Zhao Y, Mamat M, Aysa A, Ubul K (2023) Multimodal sentiment system and method based on crnn-svm. Neural Comput Appl, pp 1–13 Zhao Y, Mamat M, Aysa A, Ubul K (2023) Multimodal sentiment system and method based on crnn-svm. Neural Comput Appl, pp 1–13
Metadata
Title
Advancing aspect-based sentiment analysis with a novel architecture combining deep learning models CNN and bi-RNN with the machine learning model SVM
Authors
Sarsabene Hammi
Souha Mezghani Hammami
Lamia Hadrich Belguith
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01126-4

Premium Partner