Skip to main content
Top
Published in:

13-06-2024 | Review

Advancing Medical Imaging Through Generative Adversarial Networks: A Comprehensive Review and Future Prospects

Authors: Abiy Abinet Mamo, Bealu Girma Gebresilassie, Aniruddha Mukherjee, Vikas Hassija, Vinay Chamola

Published in: Cognitive Computation | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In medical imaging, traditional methods have long been relied upon. However, the integration of Generative Adversarial Networks (GANs) has sparked a paradigm shift, ushering in a new era of innovation. Our comprehensive investigation explores the groundbreaking impact of GANs on medical imaging, examining the evolution from traditional techniques to GAN-driven approaches. Through meticulous analysis, we dissect various aspects of GANs, encompassing their taxonomy, historical progression, and diverse iterations such as Self-Attention GANs (SAGAN), Conditional GANs, and Progressive Growing GANs (PGGAN). Complemented by a practical case study, we scrutinize the extensive applications of GANs, spanning image generation, reconstruction, enhancement, segmentation, and super-resolution. Despite promising prospects, enduring challenges including data scarcity, interpretability issues, and ethical concerns persist. Looking ahead, we anticipate advancements in personalized and pathological image generation, cross-modal synthesis, real-time interactive image generation, and enhanced anomaly detection. Through this review, we underscore the transformative potential of GANs in reshaping medical imaging practices, while also outlining avenues for future research endeavors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Panayides AS, Amini A, Filipovic ND, Sharma A, Tsaftaris SA, Young A, Foran D, Do N, Golemati S, Kurc T, Huang K, Nikita KS, Veasey BP, Zervakis M, Saltz JH, Pattichis CS. AI in medical imaging informatics: current challenges and future directions. IEEE J Biomed Health Inform. 2020;24(7):1837–57. Panayides AS, Amini A, Filipovic ND, Sharma A, Tsaftaris SA, Young A, Foran D, Do N, Golemati S, Kurc T, Huang K, Nikita KS, Veasey BP, Zervakis M, Saltz JH, Pattichis CS. AI in medical imaging informatics: current challenges and future directions. IEEE J Biomed Health Inform. 2020;24(7):1837–57.
3.
go back to reference Alghamdi HS, Amoudi G, Elhag S, Saeedi K, Nasser J. Deep learning approaches for detecting COVID-19 from chest x-ray images: a survey. IEEE Access. 2021;9:20235–54. Alghamdi HS, Amoudi G, Elhag S, Saeedi K, Nasser J. Deep learning approaches for detecting COVID-19 from chest x-ray images: a survey. IEEE Access. 2021;9:20235–54.
4.
go back to reference Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, He K, Shi Y, Shen D. Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE Rev Biomed Eng. 2021;14:4–15. Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, He K, Shi Y, Shen D. Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE Rev Biomed Eng. 2021;14:4–15.
5.
go back to reference Sluimer I, Schilham A, Prokop M, van Ginneken B. Computer analysis of computed tomography scans of the lung: a survey. IEEE Trans Med Imaging. 2006;25(4):385–405. Sluimer I, Schilham A, Prokop M, van Ginneken B. Computer analysis of computed tomography scans of the lung: a survey. IEEE Trans Med Imaging. 2006;25(4):385–405.
6.
go back to reference Fan C-C, Peng L, Wang T, Yang H, Zhou X-H, Ni Z-L, Wang G, Chen S, Zhou Y-J, Hou Z-G. TR-GAN: multi-session future MRI prediction with temporal recurrent generative adversarial network. IEEE Trans Med Imaging. 2022;41(8):1925–37. Fan C-C, Peng L, Wang T, Yang H, Zhou X-H, Ni Z-L, Wang G, Chen S, Zhou Y-J, Hou Z-G. TR-GAN: multi-session future MRI prediction with temporal recurrent generative adversarial network. IEEE Trans Med Imaging. 2022;41(8):1925–37.
7.
go back to reference Fenster A, Downey D. 3-D ultrasound imaging: a review. IEEE Eng Med Biol Mag. 1996;15(6):41–51. Fenster A, Downey D. 3-D ultrasound imaging: a review. IEEE Eng Med Biol Mag. 1996;15(6):41–51.
8.
go back to reference Pomper M, Hammoud D. Positron emission tomography in molecular imaging. IEEE Eng Med Biol Mag. 2004;23(4):28–37. Pomper M, Hammoud D. Positron emission tomography in molecular imaging. IEEE Eng Med Biol Mag. 2004;23(4):28–37.
9.
go back to reference Yu B, Zhou L, Wang L, Shi Y, Fripp J, Bourgeat P. EA-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis. IEEE Trans Med Imaging. 2019;38(7):1750–62. Yu B, Zhou L, Wang L, Shi Y, Fripp J, Bourgeat P. EA-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis. IEEE Trans Med Imaging. 2019;38(7):1750–62.
10.
go back to reference Wagner HN, Conti PS. Advances in medical imaging for cancer diagnosis and treatment. Cancer. 2006;67(S4):1121–8. Wagner HN, Conti PS. Advances in medical imaging for cancer diagnosis and treatment. Cancer. 2006;67(S4):1121–8.
11.
go back to reference Abdullah KA, Reed W. 3D printing in medical imaging and healthcare services. J Med Radiat Sci. 2018;65(3):237–9. Abdullah KA, Reed W. 3D printing in medical imaging and healthcare services. J Med Radiat Sci. 2018;65(3):237–9.
13.
go back to reference Nam D, Barrack RL, Potter HG. What are the advantages and disadvantages of imaging modalities to diagnose wear-related corrosion problems? Clin Orthop. 2014;472(12):3665. Nam D, Barrack RL, Potter HG. What are the advantages and disadvantages of imaging modalities to diagnose wear-related corrosion problems? Clin Orthop. 2014;472(12):3665.
14.
go back to reference Hartwig V, Giovannetti G, Vanello N, Lombardi M, Landini L, Simi S. Biological effects and safety in magnetic resonance imaging: a review. Int J Environ Res Public Health. 2009;6(6):1778. Hartwig V, Giovannetti G, Vanello N, Lombardi M, Landini L, Simi S. Biological effects and safety in magnetic resonance imaging: a review. Int J Environ Res Public Health. 2009;6(6):1778.
15.
go back to reference Feng E, Qin P, Chai R, Zeng J, Wang Q, Meng Y, Wang P. MRI generated from CT for acute ischemic stroke combining radiomics and generative adversarial networks. IEEE J Biomed Health Inform. 2022;26(12):6047–57. Feng E, Qin P, Chai R, Zeng J, Wang Q, Meng Y, Wang P. MRI generated from CT for acute ischemic stroke combining radiomics and generative adversarial networks. IEEE J Biomed Health Inform. 2022;26(12):6047–57.
17.
go back to reference Weese J, Lorenz C. Four challenges in medical image analysis from an industrial perspective. Med Image Anal. 2016;33:44–9. Weese J, Lorenz C. Four challenges in medical image analysis from an industrial perspective. Med Image Anal. 2016;33:44–9.
18.
go back to reference Pan Z, Yu W, Yi X, Khan A, Yuan F, Zheng Y. Recent progress on generative adversarial networks (GANs): a survey. IEEE Access. 2019;7:36322–33. Pan Z, Yu W, Yi X, Khan A, Yuan F, Zheng Y. Recent progress on generative adversarial networks (GANs): a survey. IEEE Access. 2019;7:36322–33.
19.
go back to reference Preedanan W, Suzuki K, Kondo T, Kobayashi M, Tanaka H, Ishioka J, Matsuoka Y, Fujii Y, Kumazawa I. Improvement of urinary stone segmentation using GAN-based urinary stones inpainting augmentation. IEEE Access. 2022;10:115131–42. Preedanan W, Suzuki K, Kondo T, Kobayashi M, Tanaka H, Ishioka J, Matsuoka Y, Fujii Y, Kumazawa I. Improvement of urinary stone segmentation using GAN-based urinary stones inpainting augmentation. IEEE Access. 2022;10:115131–42.
20.
go back to reference Kim E, Cho H-H, Kwon J, Oh Y-T, Ko ES, Park H. Tumor-attentive segmentation-guided GAN for synthesizing breast contrast-enhanced MRI without contrast agents. IEEE Journal of Translational Engineering in Health and Medicine. 2023;11:32–43. Kim E, Cho H-H, Kwon J, Oh Y-T, Ko ES, Park H. Tumor-attentive segmentation-guided GAN for synthesizing breast contrast-enhanced MRI without contrast agents. IEEE Journal of Translational Engineering in Health and Medicine. 2023;11:32–43.
21.
go back to reference Geng M, Tian Z, Jiang Z, You Y, Feng X, Xia Y, Yang K, Ren Q, Meng X, Maier A, Lu Y. PMS-GAN: parallel multi-stream generative adversarial network for multi-material decomposition in spectral computed tomography. IEEE Trans Med Imaging. 2021;40(2):571–84. Geng M, Tian Z, Jiang Z, You Y, Feng X, Xia Y, Yang K, Ren Q, Meng X, Maier A, Lu Y. PMS-GAN: parallel multi-stream generative adversarial network for multi-material decomposition in spectral computed tomography. IEEE Trans Med Imaging. 2021;40(2):571–84.
22.
go back to reference Bera S, Biswas PK. Noise conscious training of non local neural network powered by self attentive spectral normalized Markovian patch GAN for low dose CT denoising. IEEE Trans Med Imaging. 2021;40(12):3663–73. Bera S, Biswas PK. Noise conscious training of non local neural network powered by self attentive spectral normalized Markovian patch GAN for low dose CT denoising. IEEE Trans Med Imaging. 2021;40(12):3663–73.
23.
go back to reference Qin X, Bui FM, Nguyen HH, Han Z. Learning from limited and imbalanced medical images with finer synthetic images from GANs. IEEE Access. 2022;10:91663–77. Qin X, Bui FM, Nguyen HH, Han Z. Learning from limited and imbalanced medical images with finer synthetic images from GANs. IEEE Access. 2022;10:91663–77.
24.
go back to reference Qiao Z, Qian Z, Tang H, Gong G, Yin Y, Huang C, Fan W. CorGAN: Context aware recurrent generative adversarial network for medical image generation. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE Computer Society; 2020. pp. 1100–3. https://doi.org/10.1109/BIBM49941.2020.9313470. Qiao Z, Qian Z, Tang H, Gong G, Yin Y, Huang C, Fan W. CorGAN: Context aware recurrent generative adversarial network for medical image generation. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE Computer Society; 2020. pp. 1100–3. https://​doi.​org/​10.​1109/​BIBM49941.​2020.​9313470.
25.
go back to reference AlAmir M, AlGhamdi M. The role of generative adversarial network in medical image analysis: an in-depth survey. ACM Comput Surv. 2022;55(5):1–36. AlAmir M, AlGhamdi M. The role of generative adversarial network in medical image analysis: an in-depth survey. ACM Comput Surv. 2022;55(5):1–36.
26.
27.
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. Adv Neural Inf Proces Syst. 2014;27:1. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. Adv Neural Inf Proces Syst. 2014;27:1.
28.
go back to reference Li X, Sun Q, Li L, Liu X, Liu H, Jiao L, Liu F. SSCV-GANs: semi-supervised complex-valued GANs for PolSAR image classification. IEEE Access. 2020;8:146560–76. Li X, Sun Q, Li L, Liu X, Liu H, Jiao L, Liu F. SSCV-GANs: semi-supervised complex-valued GANs for PolSAR image classification. IEEE Access. 2020;8:146560–76.
30.
go back to reference Jiang K, Wang Z, Yi P, Wang G, Lu T, Jiang J. Edge-enhanced GAN for remote sensing image superresolution. IEEE Trans Geosci Remote Sens. 2019;57(8):5799–812. Jiang K, Wang Z, Yi P, Wang G, Lu T, Jiang J. Edge-enhanced GAN for remote sensing image superresolution. IEEE Trans Geosci Remote Sens. 2019;57(8):5799–812.
31.
go back to reference Mardani M, Gong E, Cheng JY, Vasanawala SS, Zaharchuk G, Xing L, Pauly JM. Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans Med Imaging. 2019;38(1):167–79. Mardani M, Gong E, Cheng JY, Vasanawala SS, Zaharchuk G, Xing L, Pauly JM. Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans Med Imaging. 2019;38(1):167–79.
32.
go back to reference Creswell A, Bharath AA. Inverting the generator of a generative adversarial network. IEEE Transactions on Neural Networks and Learning Systems. 2019;30(7):1967–74. Creswell A, Bharath AA. Inverting the generator of a generative adversarial network. IEEE Transactions on Neural Networks and Learning Systems. 2019;30(7):1967–74.
33.
go back to reference Hardy C, Le Merrer E, Sericola B. MD-GAN: Multi-discriminator generative adversarial networks for distributed datasets. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE Computer Society; 2019. pp. 866–77. https://doi.org/10.1109/IPDPS.2019.00095. Hardy C, Le Merrer E, Sericola B. MD-GAN: Multi-discriminator generative adversarial networks for distributed datasets. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE Computer Society; 2019. pp. 866–77. https://​doi.​org/​10.​1109/​IPDPS.​2019.​00095.
34.
go back to reference Wang Y, Zhou L, Yu B, Wang L, Zu C, Lalush DS, Lin W, Wu X, Zhou J, Shen D. 3D auto-context-based locality adaptive multi-modality GANs for pet synthesis. IEEE Trans Med Imaging. 2019;38(6):1328–39. Wang Y, Zhou L, Yu B, Wang L, Zu C, Lalush DS, Lin W, Wu X, Zhou J, Shen D. 3D auto-context-based locality adaptive multi-modality GANs for pet synthesis. IEEE Trans Med Imaging. 2019;38(6):1328–39.
36.
go back to reference Wang C, Xu C, Yao X, Tao D. Evolutionary generative adversarial networks. IEEE Trans Evol Comput. 2019;23(6):921–34. Wang C, Xu C, Yao X, Tao D. Evolutionary generative adversarial networks. IEEE Trans Evol Comput. 2019;23(6):921–34.
37.
go back to reference Huang J, Le Z, Ma Y, Fan F, Zhang H, Yang L. MGMDCGAN: medical image fusion using multi-generator multi-discriminator conditional generative adversarial network. IEEE Access. 2020;8:55145–57. Huang J, Le Z, Ma Y, Fan F, Zhang H, Yang L. MGMDCGAN: medical image fusion using multi-generator multi-discriminator conditional generative adversarial network. IEEE Access. 2020;8:55145–57.
38.
go back to reference Ye H, Liang L, Li GY, Juang B-H. Deep learning-based end-to-end wireless communication systems with conditional GANs as unknown channels. IEEE Trans Wireless Commun. 2020;19(5):3133–43. Ye H, Liang L, Li GY, Juang B-H. Deep learning-based end-to-end wireless communication systems with conditional GANs as unknown channels. IEEE Trans Wireless Commun. 2020;19(5):3133–43.
39.
40.
go back to reference Abu Ebayyeh AARM, Danishvar S, Mousavi A. An improved capsule network (WaferCaps) for wafer bin map classification based on DCGAN data upsampling. IEEE Trans Semicond Manuf. 2022;35(1):50–9. Abu Ebayyeh AARM, Danishvar S, Mousavi A. An improved capsule network (WaferCaps) for wafer bin map classification based on DCGAN data upsampling. IEEE Trans Semicond Manuf. 2022;35(1):50–9.
44.
go back to reference Yu B, Zhou L, Wang L, Shi Y, Fripp J, Bourgeat P. Sample-adaptive GANs: linking global and local mappings for cross-modality MR image synthesis. IEEE Trans Med Imaging. 2020;39(7):2339–50. Yu B, Zhou L, Wang L, Shi Y, Fripp J, Bourgeat P. Sample-adaptive GANs: linking global and local mappings for cross-modality MR image synthesis. IEEE Trans Med Imaging. 2020;39(7):2339–50.
45.
go back to reference Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552. Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552.
46.
go back to reference Tran N-T, Tran V-H, Nguyen N-B, Nguyen T-K, Cheung N-M. On data augmentation for GAN training. IEEE Trans Image Process. 2021;30:1882–97.MathSciNet Tran N-T, Tran V-H, Nguyen N-B, Nguyen T-K, Cheung N-M. On data augmentation for GAN training. IEEE Trans Image Process. 2021;30:1882–97.MathSciNet
47.
go back to reference Zhan B, Li D, Wu X, Zhou J, Wang Y. Multi-modal MRI image synthesis via GAN with multi-scale gate mergence. IEEE J Biomed Health Inform. 2022;26(1):17–26. Zhan B, Li D, Wu X, Zhou J, Wang Y. Multi-modal MRI image synthesis via GAN with multi-scale gate mergence. IEEE J Biomed Health Inform. 2022;26(1):17–26.
48.
go back to reference Subramaniam P, Kossen T, Ritter K, Hennemuth A, Hildebrand K, Hilbert A, Sobesky J, Livne M, Galinovic I, Khalil AA, Fiebach JB, Frey D, Madai VI. Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks. Med Image Anal. 2022;78:102396. Subramaniam P, Kossen T, Ritter K, Hennemuth A, Hildebrand K, Hilbert A, Sobesky J, Livne M, Galinovic I, Khalil AA, Fiebach JB, Frey D, Madai VI. Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks. Med Image Anal. 2022;78:102396.
49.
go back to reference Emami H, Aliabadi MM, Dong M, Chinnam RB. SPA-GAN: spatial attention GAN for image-to-image translation. IEEE Trans Multimedia. 2021;23:391–401. Emami H, Aliabadi MM, Dong M, Chinnam RB. SPA-GAN: spatial attention GAN for image-to-image translation. IEEE Trans Multimedia. 2021;23:391–401.
50.
go back to reference Geng M, Meng X, Yu J, Zhu L, Jin L, Jiang Z, Qiu B, Li H, Kong H, Yuan J, et al. Content-noise complementary learning for medical image denoising. IEEE Trans Med Imaging. 2021;41(2):407–19. Geng M, Meng X, Yu J, Zhu L, Jin L, Jiang Z, Qiu B, Li H, Kong H, Yuan J, et al. Content-noise complementary learning for medical image denoising. IEEE Trans Med Imaging. 2021;41(2):407–19.
51.
go back to reference Nho Y-H, Ryu S, Kwon D-S. UI-GAN: generative adversarial network-based anomaly detection using user initial information for wearable devices. IEEE Sens J. 2021;21(8):9949–58. Nho Y-H, Ryu S, Kwon D-S. UI-GAN: generative adversarial network-based anomaly detection using user initial information for wearable devices. IEEE Sens J. 2021;21(8):9949–58.
52.
go back to reference Sampath V, Maurtua I, Aguilar Martín JJ, Gutierrez A. A survey on generative adversarial networks for imbalance problems in computer vision tasks. J Big Data. 2021;8(1):1–59. Sampath V, Maurtua I, Aguilar Martín JJ, Gutierrez A. A survey on generative adversarial networks for imbalance problems in computer vision tasks. J Big Data. 2021;8(1):1–59.
53.
go back to reference Tai Y, Zhang L, Li Q, Zhu C, Chang V, Rodrigues JJPC, Guizani M. Digital-twin-enabled IoMT system for surgical simulation using RAC-GAN. IEEE Internet Things J. 2022;9(21):20918–31. Tai Y, Zhang L, Li Q, Zhu C, Chang V, Rodrigues JJPC, Guizani M. Digital-twin-enabled IoMT system for surgical simulation using RAC-GAN. IEEE Internet Things J. 2022;9(21):20918–31.
54.
go back to reference Zhao Y, Ma B, Jiang P, Zeng D, Wang X, Li S. Prediction of Alzheimer’s disease progression with multi-information generative adversarial network. IEEE J Biomed Health Inform. 2021;25(3):711–9. Zhao Y, Ma B, Jiang P, Zeng D, Wang X, Li S. Prediction of Alzheimer’s disease progression with multi-information generative adversarial network. IEEE J Biomed Health Inform. 2021;25(3):711–9.
55.
go back to reference Jung E, Luna M, Park SH. Conditional GAN with 3D discriminator for MRI generation of Alzheimer’s disease progression. Pattern Recognit. 2023;133:109061. Jung E, Luna M, Park SH. Conditional GAN with 3D discriminator for MRI generation of Alzheimer’s disease progression. Pattern Recognit. 2023;133:109061.
56.
go back to reference Kaissis GA, Makowski MR, Rückert D, Braren RF. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell. 2020;2:305–11. Kaissis GA, Makowski MR, Rückert D, Braren RF. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell. 2020;2:305–11.
57.
go back to reference Santosh KC, Gaur L. Privacy, security, and ethical issues. In: Artificial Intelligence and Machine Learning in Public Healthcare. Singapore: Springer; 2022. p. 65–74. Santosh KC, Gaur L. Privacy, security, and ethical issues. In: Artificial Intelligence and Machine Learning in Public Healthcare. Singapore: Springer; 2022. p. 65–74.
58.
go back to reference Jung E, Luna M, Park SH. Conditional GAN with an attention-based generator and a 3D discriminator for 3D medical image generation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. Cham, Switzerland: Springer; 2021. p. 318–28. Jung E, Luna M, Park SH. Conditional GAN with an attention-based generator and a 3D discriminator for 3D medical image generation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. Cham, Switzerland: Springer; 2021. p. 318–28.
60.
63.
go back to reference Kwon H-J, Shin D-H, Chung K. PGGAN-based anomaly classification on chest x-ray using weighted multi-scale similarity. IEEE Access. 2021;9:113315–25. Kwon H-J, Shin D-H, Chung K. PGGAN-based anomaly classification on chest x-ray using weighted multi-scale similarity. IEEE Access. 2021;9:113315–25.
64.
go back to reference Han C, Rundo L, Araki R, Nagano Y, Furukawa Y, Mauri G, Nakayama H, Hayashi H. Combining noise-to-image and image-to-image GANs: brain MR image augmentation for tumor detection. IEEE Access. 2019;7:156966–77. Han C, Rundo L, Araki R, Nagano Y, Furukawa Y, Mauri G, Nakayama H, Hayashi H. Combining noise-to-image and image-to-image GANs: brain MR image augmentation for tumor detection. IEEE Access. 2019;7:156966–77.
65.
go back to reference Zhang F, Bai J, Zhang J, Xiao Z, Pei C. An optimized training method for GAN-based hyperspectral image classification. IEEE Geosci Remote Sens Lett. 2021;18(10):1791–5. Zhang F, Bai J, Zhang J, Xiao Z, Pei C. An optimized training method for GAN-based hyperspectral image classification. IEEE Geosci Remote Sens Lett. 2021;18(10):1791–5.
66.
go back to reference Togo R, Ogawa T, Haseyama M. Synthetic gastritis image generation via loss function-based conditional PGGAN. IEEE Access. 2019;7:87448–57. Togo R, Ogawa T, Haseyama M. Synthetic gastritis image generation via loss function-based conditional PGGAN. IEEE Access. 2019;7:87448–57.
67.
go back to reference Han C, Rundo L, Araki R, Nagano Y, Furukawa Y, Mauri G, Nakayama H, Hayashi H. Combining noise-to-image and image-to-image GANs: brain MR image augmentation for tumor detection. IEEE Access. 2019;7:156966–77. Han C, Rundo L, Araki R, Nagano Y, Furukawa Y, Mauri G, Nakayama H, Hayashi H. Combining noise-to-image and image-to-image GANs: brain MR image augmentation for tumor detection. IEEE Access. 2019;7:156966–77.
68.
go back to reference Zhang R, Lu W, Wei X, Zhu J, Jiang H, Liu Z, Gao J, Li X, Yu J, Yu M, Yu R. A progressive generative adversarial method for structurally inadequate medical image data augmentation. IEEE J Biomed Health Inform. 2022;26(1):7–16. Zhang R, Lu W, Wei X, Zhu J, Jiang H, Liu Z, Gao J, Li X, Yu J, Yu M, Yu R. A progressive generative adversarial method for structurally inadequate medical image data augmentation. IEEE J Biomed Health Inform. 2022;26(1):7–16.
69.
go back to reference Panayides AS, Amini A, Filipovic ND, Sharma A, Tsaftaris SA, Young A, Foran D, Do N, Golemati S, Kurc T, Huang K, Nikita KS, Veasey BP, Zervakis M, Saltz JH, Pattichis CS. AI in medical imaging informatics: current challenges and future directions. IEEE J Biomed Health Inform. 2020;24(7):1837–57. Panayides AS, Amini A, Filipovic ND, Sharma A, Tsaftaris SA, Young A, Foran D, Do N, Golemati S, Kurc T, Huang K, Nikita KS, Veasey BP, Zervakis M, Saltz JH, Pattichis CS. AI in medical imaging informatics: current challenges and future directions. IEEE J Biomed Health Inform. 2020;24(7):1837–57.
70.
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. Adv Neural Inf Proces Syst. 2014;27:1. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. Adv Neural Inf Proces Syst. 2014;27:1.
72.
go back to reference Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, Wang Q, Shen D. Medical image synthesis with deep convolutional adversarial networks. IEEE Trans Biomed Eng. 2018;65(12):2720–30. Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, Wang Q, Shen D. Medical image synthesis with deep convolutional adversarial networks. IEEE Trans Biomed Eng. 2018;65(12):2720–30.
73.
go back to reference Zhou Y, Wang B, He X, Cui S, Shao L. DR-GAN: conditional generative adversarial network for fine-grained lesion synthesis on diabetic retinopathy images. IEEE J Biomed Health Inform. 2022;26(1):56–66. Zhou Y, Wang B, He X, Cui S, Shao L. DR-GAN: conditional generative adversarial network for fine-grained lesion synthesis on diabetic retinopathy images. IEEE J Biomed Health Inform. 2022;26(1):56–66.
75.
go back to reference Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra MK, Zhang Y, Sun L, Wang G. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging. 2018;37(6):1348–57. Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra MK, Zhang Y, Sun L, Wang G. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging. 2018;37(6):1348–57.
77.
go back to reference Nie D, Cao X, Gao Y, Wang L, Shen D. Estimating CT image from MRI data using 3D fully convolutional networks. In: Deep Learning and Data Labeling for Medical Applications: First International Workshop, LABELS. and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings 1. Springer; 2016. p. 170–8. Nie D, Cao X, Gao Y, Wang L, Shen D. Estimating CT image from MRI data using 3D fully convolutional networks. In: Deep Learning and Data Labeling for Medical Applications: First International Workshop, LABELS. and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings 1. Springer; 2016. p. 170–8.
78.
go back to reference Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, Wang Q, Shen D. Medical image synthesis with deep convolutional adversarial networks. IEEE Trans Biomed Eng. 2018;65(12):2720–30. Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, Wang Q, Shen D. Medical image synthesis with deep convolutional adversarial networks. IEEE Trans Biomed Eng. 2018;65(12):2720–30.
79.
go back to reference Su J, Pellicer-Guridi R, Edwards T, Fuentes M, Rosen MS, Vegh V, Reutens D. A CNN based software gradiometer for electromagnetic background noise reduction in low field MRI applications. IEEE Trans Med Imaging. 2022;41(5):1007–16. Su J, Pellicer-Guridi R, Edwards T, Fuentes M, Rosen MS, Vegh V, Reutens D. A CNN based software gradiometer for electromagnetic background noise reduction in low field MRI applications. IEEE Trans Med Imaging. 2022;41(5):1007–16.
80.
go back to reference Lyu Q, Shan H, Xie Y, Kwan AC, Otaki Y, Kuronuma K, Li D, Wang G. Cine cardiac MRI motion artifact reduction using a recurrent neural network. IEEE Trans Med Imaging. 2021;40(8):2170–81. Lyu Q, Shan H, Xie Y, Kwan AC, Otaki Y, Kuronuma K, Li D, Wang G. Cine cardiac MRI motion artifact reduction using a recurrent neural network. IEEE Trans Med Imaging. 2021;40(8):2170–81.
83.
go back to reference Villani C, et al. Optimal transport: old and new. Springer; 2009. Villani C, et al. Optimal transport: old and new. Springer; 2009.
85.
go back to reference Tao L, Ren H, Ye Y, Jiang J. Seismic surface-related multiples suppression based on SAGAN. IEEE Geosci Remote Sens Lett. 2022;19:1–5. Tao L, Ren H, Ye Y, Jiang J. Seismic surface-related multiples suppression based on SAGAN. IEEE Geosci Remote Sens Lett. 2022;19:1–5.
86.
go back to reference Cao Y, Sui B, Zhang W. REL-SAGAN: relative generation adversarial network integrated with attention mechanism for scene data augmentation of remote sensing. IEEE J Sel Top Appl Earth Obs Remote Sens. 2022;15:3107–19. Cao Y, Sui B, Zhang W. REL-SAGAN: relative generation adversarial network integrated with attention mechanism for scene data augmentation of remote sensing. IEEE J Sel Top Appl Earth Obs Remote Sens. 2022;15:3107–19.
88.
go back to reference Zi Y, Xie F, Song X, Jiang Z, Zhang H. Thin cloud removal for remote sensing images using a physical-model-based CycleGAN with unpaired data. IEEE Geosci Remote Sens Lett. 2022;19:1–5. Zi Y, Xie F, Song X, Jiang Z, Zhang H. Thin cloud removal for remote sensing images using a physical-model-based CycleGAN with unpaired data. IEEE Geosci Remote Sens Lett. 2022;19:1–5.
89.
go back to reference Gu J, Ye JC. Adain-based tunable CycleGAN for efficient unsupervised low-dose CT denoising. IEEE Trans Comput Imaging. 2021;7:73–85. Gu J, Ye JC. Adain-based tunable CycleGAN for efficient unsupervised low-dose CT denoising. IEEE Trans Comput Imaging. 2021;7:73–85.
91.
go back to reference Gilani SQ, Marques O. Skin lesion analysis using generative adversarial networks: a review. Multimed Tools Appl. 2023;82(19):30065–106. Gilani SQ, Marques O. Skin lesion analysis using generative adversarial networks: a review. Multimed Tools Appl. 2023;82(19):30065–106.
93.
go back to reference Huang C-M, Wijanto E, Cheng H-C. Applying a pix2pix generative adversarial network to a Fourier-domain optical coherence tomography system for artifact elimination. IEEE Access. 2021;9:103311–24. Huang C-M, Wijanto E, Cheng H-C. Applying a pix2pix generative adversarial network to a Fourier-domain optical coherence tomography system for artifact elimination. IEEE Access. 2021;9:103311–24.
94.
go back to reference Xu X, Zhao B, Tong X, Xie H, Feng Y, Wang C, Xiao C, Ke X, Du J. A data augmentation strategy combining a modified pix2pix model and the copy-paste operator for solid waste detection with remote sensing images. IEEE J Sel Top Appl Earth Obs Remote Sens. 2022;15:8484–91. Xu X, Zhao B, Tong X, Xie H, Feng Y, Wang C, Xiao C, Ke X, Du J. A data augmentation strategy combining a modified pix2pix model and the copy-paste operator for solid waste detection with remote sensing images. IEEE J Sel Top Appl Earth Obs Remote Sens. 2022;15:8484–91.
97.
go back to reference Wang X, Gong J, Hu M, Gu Y, Ren F. Laun improved StarGAN for facial emotion recognition. IEEE Access. 2020;8:161509–18. Wang X, Gong J, Hu M, Gu Y, Ren F. Laun improved StarGAN for facial emotion recognition. IEEE Access. 2020;8:161509–18.
98.
go back to reference Chen X, Zhang Z, Qiu A, Xia Z, Xiong NN. Novel coverless steganography method based on image selection and StarGAN. IEEE Trans Netw Sci Eng. 2022;9(1):219–30. Chen X, Zhang Z, Qiu A, Xia Z, Xiong NN. Novel coverless steganography method based on image selection and StarGAN. IEEE Trans Netw Sci Eng. 2022;9(1):219–30.
99.
go back to reference Chou C-H, Han P-H, Chang C-C, Hsieh Y-Z. Garment style creator: using StarGAN for image-to-image translation of multidomain garments. IEEE Multimedia. 2022;29(1):85–93. Chou C-H, Han P-H, Chang C-C, Hsieh Y-Z. Garment style creator: using StarGAN for image-to-image translation of multidomain garments. IEEE Multimedia. 2022;29(1):85–93.
100.
go back to reference Park H-C, Hong I-P, Poudel S, Choi C. Data augmentation based on generative adversarial networks for endoscopic image classification. IEEE Access. 2023;11:49216–25. Park H-C, Hong I-P, Poudel S, Choi C. Data augmentation based on generative adversarial networks for endoscopic image classification. IEEE Access. 2023;11:49216–25.
102.
go back to reference Kelkar VA, Gotsis DS, Brooks FJ, Prabhat KC, Myers KJ, Zeng R, Anastasio MA. Assessing the ability of generative adversarial networks to learn canonical medical image statistics. IEEE Trans Med Imaging. 2023;42(6):1799–808. Kelkar VA, Gotsis DS, Brooks FJ, Prabhat KC, Myers KJ, Zeng R, Anastasio MA. Assessing the ability of generative adversarial networks to learn canonical medical image statistics. IEEE Trans Med Imaging. 2023;42(6):1799–808.
105.
go back to reference Mendes J, Pereira T, Silva F, Frade J, Morgado J, Freitas C, Negrão E, de Lima BF, da Silva MC, Madureira AJ, Ramos I, Costa JL, Hespanhol V, Cunha A, Oliveira HP. Lung CT image synthesis using GANs. Expert Syst Appl. 2023;215:119350. Mendes J, Pereira T, Silva F, Frade J, Morgado J, Freitas C, Negrão E, de Lima BF, da Silva MC, Madureira AJ, Ramos I, Costa JL, Hespanhol V, Cunha A, Oliveira HP. Lung CT image synthesis using GANs. Expert Syst Appl. 2023;215:119350.
106.
107.
go back to reference Iizuka S, Simo-Serra E, Ishikawa H. Globally and locally consistent image completion. ACM Trans Graph (ToG). 2017;36(4):1–14. Iizuka S, Simo-Serra E, Ishikawa H. Globally and locally consistent image completion. ACM Trans Graph (ToG). 2017;36(4):1–14.
108.
109.
111.
go back to reference Wolterink JM, Leiner T, Viergever MA, Išgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging. 2017;36(12):2536–45. Wolterink JM, Leiner T, Viergever MA, Išgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging. 2017;36(12):2536–45.
112.
go back to reference Liu K, Ye Z, Guo H, Cao D, Chen L, Wang F-Y. FISS GAN: a generative adversarial network for foggy image semantic segmentation. IEEE/CAA J Autom Sin. 2021;8(8):1428–39. Liu K, Ye Z, Guo H, Cao D, Chen L, Wang F-Y. FISS GAN: a generative adversarial network for foggy image semantic segmentation. IEEE/CAA J Autom Sin. 2021;8(8):1428–39.
113.
go back to reference Islam S, Aziz MT, Nabil HR, Jim JR, Mridha MF, Kabir MM, Asai N, Shin J. Generative adversarial networks (GANs) in medical imaging: advancements, applications, and challenges. IEEE Access. 2024;12:35728–53. Islam S, Aziz MT, Nabil HR, Jim JR, Mridha MF, Kabir MM, Asai N, Shin J. Generative adversarial networks (GANs) in medical imaging: advancements, applications, and challenges. IEEE Access. 2024;12:35728–53.
115.
go back to reference Li Z, Keel S, Liu C, He Y, Meng W, Scheetz J, Lee PY, Shaw J, Ting D, Wong TY, et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs. Diabetes Care. 2018;41(12):2509–16. Li Z, Keel S, Liu C, He Y, Meng W, Scheetz J, Lee PY, Shaw J, Ting D, Wong TY, et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs. Diabetes Care. 2018;41(12):2509–16.
118.
go back to reference Deecke L, Vandermeulen R, Ruff L, Mandt S, Kloft M. Image anomaly detection with generative adversarial networks: recognizing outstanding Ph.D. research. 2019. p. 3–17. Deecke L, Vandermeulen R, Ruff L, Mandt S, Kloft M. Image anomaly detection with generative adversarial networks: recognizing outstanding Ph.D. research. 2019. p. 3–17.
120.
go back to reference Choi E, Biswal S, Malin B, Duke J, Stewart WF, Sun J. Generating multi-label discrete patient records using generative adversarial networks. In: Machine Learning for Healthcare Conference. PMLR; 2017. p. 286–305. Choi E, Biswal S, Malin B, Duke J, Stewart WF, Sun J. Generating multi-label discrete patient records using generative adversarial networks. In: Machine Learning for Healthcare Conference. PMLR; 2017. p. 286–305.
124.
go back to reference Gou C, Wu Y, Wang K, Wang F-Y, Ji Q. Learning-by-synthesis for accurate eye detection. In: 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE; 2016. p. 3362–7. Gou C, Wu Y, Wang K, Wang F-Y, Ji Q. Learning-by-synthesis for accurate eye detection. In: 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE; 2016. p. 3362–7.
126.
go back to reference Zhang Y, Gan Z, Carin L. Generating text via adversarial training. In: NIPS Workshop on Adversarial Training, vol. 21. academia.edu; 2016. pp. 21–32. Zhang Y, Gan Z, Carin L. Generating text via adversarial training. In: NIPS Workshop on Adversarial Training, vol. 21. academia.edu; 2016. pp. 21–32.
128.
go back to reference Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, Metaxas DN. StackGAN++: realistic image synthesis with stacked generative adversarial networks. IEEE Trans Pattern Anal Mach Intell. 2019;41(8):1947–62. Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, Metaxas DN. StackGAN++: realistic image synthesis with stacked generative adversarial networks. IEEE Trans Pattern Anal Mach Intell. 2019;41(8):1947–62.
130.
go back to reference Hu W, Tan Y. Generating adversarial malware examples for black-box attacks based on GAN. In: International Conference on Data Mining and Big Data. Springer; 2022. p. 409–23. Hu W, Tan Y. Generating adversarial malware examples for black-box attacks based on GAN. In: International Conference on Data Mining and Big Data. Springer; 2022. p. 409–23.
136.
go back to reference Davie CA. A review of Parkinson’s disease. Br Med Bull. 2008;86(1):109–27. Davie CA. A review of Parkinson’s disease. Br Med Bull. 2008;86(1):109–27.
137.
go back to reference Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912.
138.
go back to reference Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397(10291):2284–303. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397(10291):2284–303.
140.
go back to reference Zhou T, Li Q, Lu H, Cheng Q, Zhang X. GAN review: models and medical image fusion applications. Inf Fusion. 2023;91:134–48. Zhou T, Li Q, Lu H, Cheng Q, Zhang X. GAN review: models and medical image fusion applications. Inf Fusion. 2023;91:134–48.
141.
go back to reference Qin X, Bui FM, Nguyen HH, Han Z. Learning from limited and imbalanced medical images with finer synthetic images from GANs. IEEE Access. 2022;10:91663–77. Qin X, Bui FM, Nguyen HH, Han Z. Learning from limited and imbalanced medical images with finer synthetic images from GANs. IEEE Access. 2022;10:91663–77.
143.
go back to reference Varoquaux G, Cheplygina V. Machine learning for medical imaging: methodological failures and recommendations for the future. npj Digital Med. 2022;5(48):1–8. Varoquaux G, Cheplygina V. Machine learning for medical imaging: methodological failures and recommendations for the future. npj Digital Med. 2022;5(48):1–8.
144.
go back to reference Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552. Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552.
145.
go back to reference Sorin V, Barash Y, Konen E, Klang E. Creating artificial images for radiology applications using generative adversarial networks (GANs) - a systematic review. Acad Radiol. 2020;27(8):1175–85. Sorin V, Barash Y, Konen E, Klang E. Creating artificial images for radiology applications using generative adversarial networks (GANs) - a systematic review. Acad Radiol. 2020;27(8):1175–85.
146.
go back to reference Huang Y, Zheng F, Cong R, Huang W, Scott MR, Shao L. MCMT-GAN: multi-task coherent modality transferable GAN for 3D brain image synthesis. IEEE Trans Image Process. 2020;29:8187–98. Huang Y, Zheng F, Cong R, Huang W, Scott MR, Shao L. MCMT-GAN: multi-task coherent modality transferable GAN for 3D brain image synthesis. IEEE Trans Image Process. 2020;29:8187–98.
147.
go back to reference Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9.
148.
go back to reference Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35(5):1299–312. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35(5):1299–312.
149.
go back to reference Teng Q, Liu Z, Song Y, Han K, Lu Y. A survey on the interpretability of deep learning in medical diagnosis. Multimedia Syst. 2022;28(6):2335–55. Teng Q, Liu Z, Song Y, Han K, Lu Y. A survey on the interpretability of deep learning in medical diagnosis. Multimedia Syst. 2022;28(6):2335–55.
150.
go back to reference Pan Z, Yu W, Yi X, Khan A, Yuan F, Zheng Y. Recent progress on generative adversarial networks (GANs): a survey. IEEE Access. 2019;7:36322–33. Pan Z, Yu W, Yi X, Khan A, Yuan F, Zheng Y. Recent progress on generative adversarial networks (GANs): a survey. IEEE Access. 2019;7:36322–33.
151.
go back to reference Zhou T, Li Q, Lu H, Cheng Q, Zhang X. GAN review: models and medical image fusion applications. Information Fusion. 2023;91:134–48. Zhou T, Li Q, Lu H, Cheng Q, Zhang X. GAN review: models and medical image fusion applications. Information Fusion. 2023;91:134–48.
152.
go back to reference Ding C, Xiao R, Do DH, Lee DS, Lee RJ, Kalantarian S, Hu X. Log-spectral matching GAN: PPG-based atrial fibrillation detection can be enhanced by GAN-based data augmentation with integration of spectral loss. IEEE J Biomed Health Inf. 2023;27(3):1331–41. Ding C, Xiao R, Do DH, Lee DS, Lee RJ, Kalantarian S, Hu X. Log-spectral matching GAN: PPG-based atrial fibrillation detection can be enhanced by GAN-based data augmentation with integration of spectral loss. IEEE J Biomed Health Inf. 2023;27(3):1331–41.
154.
go back to reference Nallamothu LH, Ramisetti TP, Mekala VK, Aramandla K, Duvvada RR. Interactive image generation using cycle GAN over AWS cloud. In: Proceedings of Third International Conference on Sustainable Expert Systems. Singapore: Springer; 2023. p. 411–24. Nallamothu LH, Ramisetti TP, Mekala VK, Aramandla K, Duvvada RR. Interactive image generation using cycle GAN over AWS cloud. In: Proceedings of Third International Conference on Sustainable Expert Systems. Singapore: Springer; 2023. p. 411–24.
155.
157.
go back to reference Chen RJ, Lu MY, Chen TY, Williamson DFK, Mahmood F. Synthetic data in machine learning for medicine and healthcare. Nat Biomed Eng. 2021;5:493–7. Chen RJ, Lu MY, Chen TY, Williamson DFK, Mahmood F. Synthetic data in machine learning for medicine and healthcare. Nat Biomed Eng. 2021;5:493–7.
158.
go back to reference Hassija V, Chamola V, Bajpai BC, Naren, Zeadally S. Security issues in implantable medical devices: fact or fiction? Sustain Cities Soc. 2021;66:102552. Hassija V, Chamola V, Bajpai BC, Naren, Zeadally S. Security issues in implantable medical devices: fact or fiction? Sustain Cities Soc. 2021;66:102552.
159.
go back to reference Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552. Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552.
160.
go back to reference Tian D, Jiang S, Zhang L, Lu X, Xu Y. The role of large language models in medical image processing: a narrative review. Quant Imaging Med Surg. 2024;14(1):1108. Tian D, Jiang S, Zhang L, Lu X, Xu Y. The role of large language models in medical image processing: a narrative review. Quant Imaging Med Surg. 2024;14(1):1108.
161.
go back to reference Kim K, Cho K, Jang R, Kyung S, Lee S, Ham S, Choi E, Hong G-S, Kim N. Updated primer on generative artificial intelligence and large language models in medical imaging for medical professionals. Korean J Radiol. 2024;25(3):224–42. Kim K, Cho K, Jang R, Kyung S, Lee S, Ham S, Choi E, Hong G-S, Kim N. Updated primer on generative artificial intelligence and large language models in medical imaging for medical professionals. Korean J Radiol. 2024;25(3):224–42.
Metadata
Title
Advancing Medical Imaging Through Generative Adversarial Networks: A Comprehensive Review and Future Prospects
Authors
Abiy Abinet Mamo
Bealu Girma Gebresilassie
Aniruddha Mukherjee
Vikas Hassija
Vinay Chamola
Publication date
13-06-2024
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10291-3

Premium Partner