Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 8/2021

18-02-2021 | Research Article-Mechanical Engineering

Aerodynamic Performance Optimization of Multiple Slat Airfoil based on Multi-Objective Genetic Algorithm

Authors: Krishanu Kumar, Pankaj Kumar, Santosh Kumar Singh

Published in: Arabian Journal for Science and Engineering | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, the optimization for the optimum position of the secondary slat was investigated with an emphasis on enhancing the aerodynamic performance. The method adopted here merges the computational fluid dynamic (CFD) technique with the response surface method. The multi-objective genetic algorithm was used for the optimization of the positioning of the secondary slat, and the Pareto ranking was done using a non-dominated sorting method. In CFD analysis, the Reynolds average Nervier–Stokes equation is solved using the k-ω shear stress transport model which is very popular due to its accuracy. The obtained numerical result for the primary airfoil NACA 2415 and the airfoil with a single slat is validated with the experimental data. The NACA 22 airfoil profile is selected to serve as a slat to impediment the separation of boundary layer and enhance airfoil characteristics. The addition of slat at the leading edge of the primary slat increases the overall aerodynamic performance of the configuration and enhances the stall angle from 12º to 22º. Further, the addition of slat significantly reduces the boundary layer thickness as a result delays the separation to a higher angle of attack. The method used in this work can be employed as a valuable tool for positioning optimization of the secondary slat at the leading edge of the primary slat of the airfoil.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Genc, S.; Kayank, U.; Lock, G.D.: Flow over an airfoil without and with a leading edge slat at a transitional Reynolds number. J. Aerosp. Eng. Proc. IMechE 223, 217–231 (2009)CrossRef Genc, S.; Kayank, U.; Lock, G.D.: Flow over an airfoil without and with a leading edge slat at a transitional Reynolds number. J. Aerosp. Eng. Proc. IMechE 223, 217–231 (2009)CrossRef
2.
go back to reference Prandtl I (1928) Motion of fluids with very little viscosity. NACA TN NO 452, Washington, DC. Prandtl I (1928) Motion of fluids with very little viscosity. NACA TN NO 452, Washington, DC.
3.
go back to reference Fatahian, E.; Lohrasbi Nichkoohi, A.; Salarian, H.; Khaleghinia, J.: Effects of the hinge position and suction on flow separation and aerodynamic performance of the NACA 0012 airfoil. J. Braz. Soc. Mech. Sci. Eng. 42, 86 (2020)CrossRef Fatahian, E.; Lohrasbi Nichkoohi, A.; Salarian, H.; Khaleghinia, J.: Effects of the hinge position and suction on flow separation and aerodynamic performance of the NACA 0012 airfoil. J. Braz. Soc. Mech. Sci. Eng. 42, 86 (2020)CrossRef
4.
go back to reference Weik FE, Platt RC, (1993) Wind tunnel tests on a model wing with flower flap and specially developed leading edge slot. NACA TN NO 459 Washington DC. Weik FE, Platt RC, (1993) Wind tunnel tests on a model wing with flower flap and specially developed leading edge slot. NACA TN NO 459 Washington DC.
5.
go back to reference Kruger W (1947) Wind-Tunnel Investigation on a Changed Mustang Profile with Nose Flap Force and Pressure-Distribution measurements, NACA TN NO 1177. Washington, DC. Kruger W (1947) Wind-Tunnel Investigation on a Changed Mustang Profile with Nose Flap Force and Pressure-Distribution measurements, NACA TN NO 1177. Washington, DC.
6.
go back to reference Yavuz T, Klks B, Akpnar H, Erol O (2011) Performance analysis of a hydro-foil with and without leading edge slat. In: 10th International Conference on Machine Learning and Applications and Workshops Hawai, pp. 281–285. Yavuz T, Klks B, Akpnar H, Erol O (2011) Performance analysis of a hydro-foil with and without leading edge slat. In: 10th International Conference on Machine Learning and Applications and Workshops Hawai, pp. 281–285.
7.
go back to reference Soderman PT (1972) Aerodynamic effects of leading-edge serrations on a two-dimensional airfoil, NASA Technical Note, NASA TM X-2643, A-3706 Soderman PT (1972) Aerodynamic effects of leading-edge serrations on a two-dimensional airfoil, NASA Technical Note, NASA TM X-2643, A-3706
8.
go back to reference Yavuz, T.; Koc, E.; Kilkis, B.; Erol, O.; Balas, C.; Aydemir, T.: Performance analysis of the airfoil-slat arrangements for hydro and wind turbine application. Renew Energy 74, 414–421 (2015)CrossRef Yavuz, T.; Koc, E.; Kilkis, B.; Erol, O.; Balas, C.; Aydemir, T.: Performance analysis of the airfoil-slat arrangements for hydro and wind turbine application. Renew Energy 74, 414–421 (2015)CrossRef
9.
go back to reference Choudhry, A.; Arjomandi, M.; Kelso, R.: A study of long separation bubble on thick airfoils and its consequent effects. Int. J. Heat Fluid Flow 52, 84–96 (2015)CrossRef Choudhry, A.; Arjomandi, M.; Kelso, R.: A study of long separation bubble on thick airfoils and its consequent effects. Int. J. Heat Fluid Flow 52, 84–96 (2015)CrossRef
11.
go back to reference Matyushenko, A.A.; Garbaruk, A.V.: Adjustment of the k-ω SST turbulence model for prediction of airfoil characteristics near stall. J. Phys. Conf. Ser. 769, 012082 (2016)CrossRef Matyushenko, A.A.; Garbaruk, A.V.: Adjustment of the k-ω SST turbulence model for prediction of airfoil characteristics near stall. J. Phys. Conf. Ser. 769, 012082 (2016)CrossRef
14.
go back to reference Besnard E, Schmitz A, Boscher E, Garcia N, Cebeci T (1998) Two-Dimensional Aircraft High Lift System Design and Optimization. 36th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 98–0123. Besnard E, Schmitz A, Boscher E, Garcia N, Cebeci T (1998) Two-Dimensional Aircraft High Lift System Design and Optimization. 36th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 98–0123.
15.
go back to reference Jureczko, M.; Pawlak, M.; Mezyk, A.: A Optimisation of wind turbine blades. J. Mater Process Technol. 167, 463–471 (2005)CrossRef Jureczko, M.; Pawlak, M.; Mezyk, A.: A Optimisation of wind turbine blades. J. Mater Process Technol. 167, 463–471 (2005)CrossRef
16.
go back to reference Burger C, Hartfield R, (2006) Wind turbine airfoil performance optimization using the vortex lattice method and a genetic algorithm. In: Proceeding of the 4th AIAA Energy Conversion Conference, San Diego, CA, USA, 26–29 June. Burger C, Hartfield R, (2006) Wind turbine airfoil performance optimization using the vortex lattice method and a genetic algorithm. In: Proceeding of the 4th AIAA Energy Conversion Conference, San Diego, CA, USA, 26–29 June.
17.
go back to reference Kenway G, Martins JRRA, (2008) Aerostructural shape optimization of wind turbine blades considering site-specific winds. In: Proceeding of the AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, BC, Canda, 10–12 Sept. Kenway G, Martins JRRA, (2008) Aerostructural shape optimization of wind turbine blades considering site-specific winds. In: Proceeding of the AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, BC, Canda, 10–12 Sept.
18.
go back to reference Li, J.Y.; Li, R.; Gao, Y.; Huang, J.: Aerodynamic optimization of wind turbine airfoils using response surface techniques. Proc. Inst. Mech. Eng. Part A J. Power Energy 224, 827–838 (2010)CrossRef Li, J.Y.; Li, R.; Gao, Y.; Huang, J.: Aerodynamic optimization of wind turbine airfoils using response surface techniques. Proc. Inst. Mech. Eng. Part A J. Power Energy 224, 827–838 (2010)CrossRef
19.
go back to reference Ju, Y.P.; Zhang, C.H.: Multi-point robust design optimization of wind turbine airfoil under geometric uncertainty. Proc. Inst. Mech. Eng. Part A J. Power Energy 226, 245–261 (2012)CrossRef Ju, Y.P.; Zhang, C.H.: Multi-point robust design optimization of wind turbine airfoil under geometric uncertainty. Proc. Inst. Mech. Eng. Part A J. Power Energy 226, 245–261 (2012)CrossRef
20.
go back to reference Liang, C.; Li, H.: Effects of optimized airfoil on vertical axis wind turbine aerodynamic performance. J. Braz. Soc. Mech. Sci. Eng. 40, 88 (2018)CrossRef Liang, C.; Li, H.: Effects of optimized airfoil on vertical axis wind turbine aerodynamic performance. J. Braz. Soc. Mech. Sci. Eng. 40, 88 (2018)CrossRef
21.
go back to reference Reis, C.J.B.; Manzanares-Filho, N.; de Lima, A.M.G.: Robust optimization of aerodynamic loadings for airfoil inverse designs. J Braz Soc. Mech. Sci. Eng. 4, 207 (2019)CrossRef Reis, C.J.B.; Manzanares-Filho, N.; de Lima, A.M.G.: Robust optimization of aerodynamic loadings for airfoil inverse designs. J Braz Soc. Mech. Sci. Eng. 4, 207 (2019)CrossRef
22.
go back to reference Box, G.E.P.: Darper NR. Empirical model building and response surfaces, John Wiley and Sons Inc New York USA (1978) Box, G.E.P.: Darper NR. Empirical model building and response surfaces, John Wiley and Sons Inc New York USA (1978)
23.
go back to reference Box, G.E.P.; Wilson, K.B.: On the experimental attainment of optimum onditions. J. R. Stat. Soc. Ser. B 13, 1–45 (1951)MATH Box, G.E.P.; Wilson, K.B.: On the experimental attainment of optimum onditions. J. R. Stat. Soc. Ser. B 13, 1–45 (1951)MATH
24.
go back to reference Goldberg, D.E.: Genetic algorithm in search, optimization and machine learning, Addison-Wesley. Reading, MA (1989) Goldberg, D.E.: Genetic algorithm in search, optimization and machine learning, Addison-Wesley. Reading, MA (1989)
25.
go back to reference Holland, J.: Adaptation in natural and artifical systems. The University of Michigan Press, Ann Arbor MI (1975) Holland, J.: Adaptation in natural and artifical systems. The University of Michigan Press, Ann Arbor MI (1975)
27.
go back to reference Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)CrossRef Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)CrossRef
28.
go back to reference Montoya, M.C.; Nieto, F.; Alvarez, A.J.; Hernandez, S.; Jurado, J.A.: Numerical simulations of the aerodynamic response of circular segments with different corner angles by means of 2D URANS. Impact of turbulence modeling approaches. Eng. Appl. Comput. Fluid Mech. 12(1), 750–779 (2018) Montoya, M.C.; Nieto, F.; Alvarez, A.J.; Hernandez, S.; Jurado, J.A.: Numerical simulations of the aerodynamic response of circular segments with different corner angles by means of 2D URANS. Impact of turbulence modeling approaches. Eng. Appl. Comput. Fluid Mech. 12(1), 750–779 (2018)
30.
go back to reference Kumar, P.; Singh, S.K.: Flow past a bluff body subjected to lower subcritical Reynolds number. J. Ocean Eng. Sci. 5, 173–179 (2020)CrossRef Kumar, P.; Singh, S.K.: Flow past a bluff body subjected to lower subcritical Reynolds number. J. Ocean Eng. Sci. 5, 173–179 (2020)CrossRef
31.
go back to reference Eleni, D.C.; Athanasios, T.I.; Dionissios, M.P.: Evaluation of the Turbulence Models for the Simulation of the Flow over an Aerofoil. J Mech Eng Res 4(3), 100–111 (2012) Eleni, D.C.; Athanasios, T.I.; Dionissios, M.P.: Evaluation of the Turbulence Models for the Simulation of the Flow over an Aerofoil. J Mech Eng Res 4(3), 100–111 (2012)
33.
go back to reference Anderson Jr, J.D.: Fundamental of aerodynamics, 2nd edn. McGraw-Hill Inc, NY (1991) Anderson Jr, J.D.: Fundamental of aerodynamics, 2nd edn. McGraw-Hill Inc, NY (1991)
Metadata
Title
Aerodynamic Performance Optimization of Multiple Slat Airfoil based on Multi-Objective Genetic Algorithm
Authors
Krishanu Kumar
Pankaj Kumar
Santosh Kumar Singh
Publication date
18-02-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 8/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05448-3

Other articles of this Issue 8/2021

Arabian Journal for Science and Engineering 8/2021 Go to the issue

Premium Partners