Skip to main content
Top

2014 | OriginalPaper | Chapter

5. Aerosol Sampling and Transport

Authors : Jorma Keskinen, Marko Marjamäki

Published in: Bioaerosol Detection Technologies

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The instruments described in this section aim at detecting biological particles suspended in air. This chapter describes the art and components of sampling the aerosol and transporting the particles to the actual detection unit, while keeping them airborne. Depending on the detection principle, later stages may require transferring the particles into another medium such as a liquid.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Belyaev SP, Levin LM (1974) Techniques for collecting of representative aerosol samples. J Aerosol Sci 5:325–338CrossRef Belyaev SP, Levin LM (1974) Techniques for collecting of representative aerosol samples. J Aerosol Sci 5:325–338CrossRef
2.
go back to reference Bergman W, Shinn, Lochner R et al (2005) High air flow, low pressure drop, bio-aerosol collector using a multi-slit virtual impactor. J Aerosol Sci 36:619–638CrossRef Bergman W, Shinn, Lochner R et al (2005) High air flow, low pressure drop, bio-aerosol collector using a multi-slit virtual impactor. J Aerosol Sci 36:619–638CrossRef
3.
go back to reference Brockmann JE (2001) Sampling and Transport of Aerosols. In: Baron PA, Willeke K (ed) Aerosol Measurement: Principles, Techniques, and Applications, 2nd edn. Wiley, New York Brockmann JE (2001) Sampling and Transport of Aerosols. In: Baron PA, Willeke K (ed) Aerosol Measurement: Principles, Techniques, and Applications, 2nd edn. Wiley, New York
4.
go back to reference Chen BT, Yeh HC (1987) An improved virtual impactor: Design and performance. J Aerosol Sci 18:203–214CrossRef Chen BT, Yeh HC (1987) An improved virtual impactor: Design and performance. J Aerosol Sci 18:203–214CrossRef
5.
go back to reference Conner WD (1966) An inertial-type particle separator for collecting large samples. JAPCA J Air Waste Ma 16:35–38 Conner WD (1966) An inertial-type particle separator for collecting large samples. JAPCA J Air Waste Ma 16:35–38
6.
go back to reference Davies CN (1968) The entry of aerosols into sampling tubes and heads. Br J Appl Phys (J Phys D: Appl Phys) 1:921–932CrossRef Davies CN (1968) The entry of aerosols into sampling tubes and heads. Br J Appl Phys (J Phys D: Appl Phys) 1:921–932CrossRef
7.
go back to reference Durham MD, Lundgren DA (1980) Evaluation of aerosol aspiration efficiency as a function of stokes number, velocity ratio and nozzle angle. J Aerosol Sci 11:179–188CrossRef Durham MD, Lundgren DA (1980) Evaluation of aerosol aspiration efficiency as a function of stokes number, velocity ratio and nozzle angle. J Aerosol Sci 11:179–188CrossRef
8.
go back to reference Dzubay TG, Stevens RK (1975) Ambient air analysis with dichotomous sampler and X-ray fluorescence spectrometer. Environ Sci Technol 9: 663–668 Dzubay TG, Stevens RK (1975) Ambient air analysis with dichotomous sampler and X-ray fluorescence spectrometer. Environ Sci Technol 9: 663–668
9.
go back to reference European Committee for Standardization (1998) EN 12341:1998 Air quality—Determination of the PM 10 fraction of suspended particulate matter—Reference method and field test procedure to demonstrate reference equivalence of measurement methods. Brussels European Committee for Standardization (1998) EN 12341:1998 Air quality—Determination of the PM 10 fraction of suspended particulate matter—Reference method and field test procedure to demonstrate reference equivalence of measurement methods. Brussels
10.
go back to reference Forney LJ, Ravenhall DG, Lee SS (1982) Experimental and theoretical study of a two-dimensional virtual impactor. Environ Sci Technol 16:492–497 Forney LJ, Ravenhall DG, Lee SS (1982) Experimental and theoretical study of a two-dimensional virtual impactor. Environ Sci Technol 16:492–497
11.
go back to reference Fuchs NA (1964) The Mechanics of Aerosols. Pergamon Press, Oxford Fuchs NA (1964) The Mechanics of Aerosols. Pergamon Press, Oxford
12.
go back to reference Granger RA (1995) Fluid Mechanics. Dover Publications, New York Granger RA (1995) Fluid Mechanics. Dover Publications, New York
13.
go back to reference Haglund JS, Chandra S, McFarland AR (2002) Evaluation of a high volume aerosol concentrator. Aerosol Sci Technol 36:690–696CrossRef Haglund JS, Chandra S, McFarland AR (2002) Evaluation of a high volume aerosol concentrator. Aerosol Sci Technol 36:690–696CrossRef
14.
go back to reference Haglund JS, McFarland AR (2004) A circumferential slot virtual impactor. Aerosol Sci Technol 38:664–674CrossRef Haglund JS, McFarland AR (2004) A circumferential slot virtual impactor. Aerosol Sci Technol 38:664–674CrossRef
15.
go back to reference Hangal S, Willeke K. (1990) Aspiration efficiency: Unified model for all forward sampling angles. Environ Sci Technol 24:688–691.CrossRef Hangal S, Willeke K. (1990) Aspiration efficiency: Unified model for all forward sampling angles. Environ Sci Technol 24:688–691.CrossRef
16.
go back to reference Heyder J, Gebhart J (1977) Gravitational deposition of particles from laminar aerosol flow through inclined circular tubes. J Aerosol Sci 8:289–295 Heyder J, Gebhart J (1977) Gravitational deposition of particles from laminar aerosol flow through inclined circular tubes. J Aerosol Sci 8:289–295
17.
go back to reference Hangal S, Willeke K (1990) Overall efficiency of tubular inlets sampling at 0–90 degrees from horizontal aerosol flows. Atmos Environ A-Gen 24A:2379–2386.CrossRef Hangal S, Willeke K (1990) Overall efficiency of tubular inlets sampling at 0–90 degrees from horizontal aerosol flows. Atmos Environ A-Gen 24A:2379–2386.CrossRef
18.
go back to reference Hinds WC (1999) Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd edn. Wiley, New York Hinds WC (1999) Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd edn. Wiley, New York
19.
go back to reference Ho J (2012) Use of Virtual Impactor (VI) Technology in Biological Aerosol Detection. Kona Powder Part J 29:16–26CrossRef Ho J (2012) Use of Virtual Impactor (VI) Technology in Biological Aerosol Detection. Kona Powder Part J 29:16–26CrossRef
20.
go back to reference Ho J, Stanley NJ, Kuehn TH (2011) Feasibility of using real-time optical methods for detecting the presence of viable bacteria aerosols at low concentrations in clean room environments. Aerobiologia 27:163–172CrossRef Ho J, Stanley NJ, Kuehn TH (2011) Feasibility of using real-time optical methods for detecting the presence of viable bacteria aerosols at low concentrations in clean room environments. Aerobiologia 27:163–172CrossRef
21.
go back to reference Kaye PH, Stanley WR, Hirst E et al (2005) Single particle multichannel bio-aerosol fluorescence sensor. Opt Express 13: 3583–3593CrossRef Kaye PH, Stanley WR, Hirst E et al (2005) Single particle multichannel bio-aerosol fluorescence sensor. Opt Express 13: 3583–3593CrossRef
22.
go back to reference Kesavan J, Bottiger JR, McFarland AR (2008) Bioaerosol concentrator performance: comparative tests with viable and with solid and liquid nonviable particles. J Appl Microbiol 104:285–295 Kesavan J, Bottiger JR, McFarland AR (2008) Bioaerosol concentrator performance: comparative tests with viable and with solid and liquid nonviable particles. J Appl Microbiol 104:285–295
go back to reference Keskinen J, Lehtimäki M, Janka K (1987) Virtual impactor as an accessory to optical particle counters. Aerosol Sci Technol 6:79–83 Keskinen J, Lehtimäki M, Janka K (1987) Virtual impactor as an accessory to optical particle counters. Aerosol Sci Technol 6:79–83
24.
go back to reference John W (1999) A simple derivation of the cutpoint of an impactor. J. Aerosol Sci. 30:1317–1320CrossRef John W (1999) A simple derivation of the cutpoint of an impactor. J. Aerosol Sci. 30:1317–1320CrossRef
25.
go back to reference Lee KW, Gieseke JA (1994) Deposition of particles in turbulent pipe flows. J Aerosol Sci 25:699–709 Lee KW, Gieseke JA (1994) Deposition of particles in turbulent pipe flows. J Aerosol Sci 25:699–709
26.
go back to reference Lee P, Chen D-R, Pui DYH (2003) Experimental study of a nanoparticle virtual impactor. J Nanopart Res 5: 269–280 Lee P, Chen D-R, Pui DYH (2003) Experimental study of a nanoparticle virtual impactor. J Nanopart Res 5: 269–280
27.
go back to reference Liebhaber FB, Lehtimäki M, Willeke K (1991) Low-cost virtual impactor for large-particle amplification in optical particle counters. Aerosol Sci Technol. 15:208–213CrossRef Liebhaber FB, Lehtimäki M, Willeke K (1991) Low-cost virtual impactor for large-particle amplification in optical particle counters. Aerosol Sci Technol. 15:208–213CrossRef
28.
go back to reference Liu BYH, Pui DYH (1981) Aerosol sampling inlets and inhalable particles. Atmos Environ 15: 589–600 Liu BYH, Pui DYH (1981) Aerosol sampling inlets and inhalable particles. Atmos Environ 15: 589–600
29.
go back to reference Liu BYH, Zhang ZQ, Kuehn TH (1989) A numerical study of inertial errors in anisokinetic sampling. J Aerosol Sci 20: 367–380CrossRef Liu BYH, Zhang ZQ, Kuehn TH (1989) A numerical study of inertial errors in anisokinetic sampling. J Aerosol Sci 20: 367–380CrossRef
30.
go back to reference Loo BW, Cork CP (1988) Development of High Efficiency Virtual Impactors. Aerosol Sci Technol 9:167–176CrossRef Loo BW, Cork CP (1988) Development of High Efficiency Virtual Impactors. Aerosol Sci Technol 9:167–176CrossRef
31.
go back to reference Marjamäki M, Keskinen J, Chen D-R et al (2000) Performance evaluation of electrical low pressure impactor (ELPI). J Aerosol Sci 31:249–261CrossRef Marjamäki M, Keskinen J, Chen D-R et al (2000) Performance evaluation of electrical low pressure impactor (ELPI). J Aerosol Sci 31:249–261CrossRef
32.
go back to reference Marple VA and Chien CM (1980) Virtual impactors: a theoretical study. Environ Sci Technol 14:976–984CrossRef Marple VA and Chien CM (1980) Virtual impactors: a theoretical study. Environ Sci Technol 14:976–984CrossRef
33.
go back to reference Marple VA, Olson BA, Rubow KL (2001) Inertial, Gravitational, Centrifugal, and Thermal Collection Techniques. In: Baron PA, Willeke K (ed) Aerosol Measurement: Principles, Techniques, and Applications, 2nd edn. Wiley, New York Marple VA, Olson BA, Rubow KL (2001) Inertial, Gravitational, Centrifugal, and Thermal Collection Techniques. In: Baron PA, Willeke K (ed) Aerosol Measurement: Principles, Techniques, and Applications, 2nd edn. Wiley, New York
34.
go back to reference Muyshondt A, McFarland AR, Anand NK (1996) Deposition of aerosol particles in contraction fittings. Aerosol Sci Technol 24:205–216CrossRef Muyshondt A, McFarland AR, Anand NK (1996) Deposition of aerosol particles in contraction fittings. Aerosol Sci Technol 24:205–216CrossRef
35.
go back to reference Novick VJ, Alvarez JL (1987) Design of a multistage virtual impactor. Aerosol Sci Technol 6:63–70 Novick VJ, Alvarez JL (1987) Design of a multistage virtual impactor. Aerosol Sci Technol 6:63–70
36.
go back to reference Pan Y-L, Hartings J, Pinnick RG et al (2003) Single-particle fluorescence spectrometer for ambient aerosols. Aerosol Sci Technol 37:628–639CrossRef Pan Y-L, Hartings J, Pinnick RG et al (2003) Single-particle fluorescence spectrometer for ambient aerosols. Aerosol Sci Technol 37:628–639CrossRef
37.
go back to reference Park D, Kim Y-H, Woo Park C et al (2009) New bio-aerosol collector using a micromachined virtual impactor. J Aerosol Sci 40:415–422CrossRef Park D, Kim Y-H, Woo Park C et al (2009) New bio-aerosol collector using a micromachined virtual impactor. J Aerosol Sci 40:415–422CrossRef
38.
go back to reference Pinnick RG, Hill SC, Nachman P, Pendleton JD, Fernandez GL, Mayo MW, Bruno JG (1995). Fluorescence particle counter for detecting airborne bacteria and other biological particles. Aerosol Sci Technol 23: 653–664 Pinnick RG, Hill SC, Nachman P, Pendleton JD, Fernandez GL, Mayo MW, Bruno JG (1995). Fluorescence particle counter for detecting airborne bacteria and other biological particles. Aerosol Sci Technol 23: 653–664
39.
go back to reference Pui DYH, Romay-Novas F, Liu BYH (1987) Experimental study of particle deposition in bends of circular cross section. Aerosol Sci Technol 7:301–315CrossRef Pui DYH, Romay-Novas F, Liu BYH (1987) Experimental study of particle deposition in bends of circular cross section. Aerosol Sci Technol 7:301–315CrossRef
40.
go back to reference Romay FJ, Roberts, Marple VA et al (2002) A high-performance aerosol concentrator for biological agent detection. Aerosol Sci Technol 36:217–226CrossRef Romay FJ, Roberts, Marple VA et al (2002) A high-performance aerosol concentrator for biological agent detection. Aerosol Sci Technol 36:217–226CrossRef
41.
go back to reference Rostedt A, Putkiranta M, MarjamaÌki M et al (2006) Optical chamber design for aerosol particle fluorescent measurement. Proceedings of SPIE—The International Society for Optical Engineering 6398, art. no. 63980G Rostedt A, Putkiranta M, MarjamaÌki M et al (2006) Optical chamber design for aerosol particle fluorescent measurement. Proceedings of SPIE—The International Society for Optical Engineering 6398, art. no. 63980G
42.
go back to reference Seinfeld JH, Pandis SN (1998) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New York Seinfeld JH, Pandis SN (1998) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New York
43.
go back to reference Sioutas C, Koutrakis P, Burton RM (1994) Development of a low cutpoint slit virtual impactor for sampling ambient fine particles. J Aerosol Sci 25:1321–1330CrossRef Sioutas C, Koutrakis P, Burton RM (1994) Development of a low cutpoint slit virtual impactor for sampling ambient fine particles. J Aerosol Sci 25:1321–1330CrossRef
44.
go back to reference Thomas JW (1958) Gravity settling of particles in a horizontal tube. J Air Pollut Control Assoc 8: 32–34 Thomas JW (1958) Gravity settling of particles in a horizontal tube. J Air Pollut Control Assoc 8: 32–34
45.
go back to reference Vincent JH (2007) Aerosol Sampling—Science, Standards, Instrumentation and Applications. Wiley, Chichester Vincent JH (2007) Aerosol Sampling—Science, Standards, Instrumentation and Applications. Wiley, Chichester
46.
go back to reference Wu JJ, Cooper DW, Miller RJ (1989) Virtual impactor aerosol concentrator for cleanroom monitoring. J Environ Sci 32:52–56 Wu JJ, Cooper DW, Miller RJ (1989) Virtual impactor aerosol concentrator for cleanroom monitoring. J Environ Sci 32:52–56
Metadata
Title
Aerosol Sampling and Transport
Authors
Jorma Keskinen
Marko Marjamäki
Copyright Year
2014
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-5582-1_5

Premium Partners