Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

AI Architectures for Very Smart Sensors

Authors : Peter Malík, Štefan Krištofík

Published in: Convergence of Artificial Intelligence and the Internet of Things

Publisher: Springer International Publishing

Abstract

The chapter describes modern neural network designs and discusses their advantages and disadvantages. The state-of-the-art neural networks are usually too much computationally difficult which limits their use in mobile and IoT applications. However, they can be modified with special design techniques which would make them suitable for mobile or IoT applications with limited computational power. These techniques for designing more efficient neural networks are described in great detail. Using them opens a way to create extremely efficient neural networks for mobile or even IoT applications. Such neural networks make the applications very intelligent which paves the way for very smart sensors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI 16(2016), pp. 265–283 (2016) Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI 16(2016), pp. 265–283 (2016)
3.
4.
go back to reference Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. In: CoRR preprint (2017). arXiv:​1706.​05587 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. In: CoRR preprint (2017). arXiv:​1706.​05587
5.
go back to reference Chen, L.-C., Hermans, A., Papandreou, G., Schroff, F., Wang, P., Adam, H.: MaskLab: instance segmentation by refining object detection with semantic and direction features. In: CVPR, pp. 4013–4022 (2018). arXiv:​1712.​04837v1 Chen, L.-C., Hermans, A., Papandreou, G., Schroff, F., Wang, P., Adam, H.: MaskLab: instance segmentation by refining object detection with semantic and direction features. In: CVPR, pp. 4013–4022 (2018). arXiv:​1712.​04837v1
6.
go back to reference Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE TPAMI 40(4), pp. 834–848 (2018) Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE TPAMI 40(4), pp. 834–848 (2018)
7.
go back to reference Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, Ch., Zhang, Z.: Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems. In: CoRR (2015). arXiv:​1512.​01274 Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, Ch., Zhang, Z.: Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems. In: CoRR (2015). arXiv:​1512.​01274
10.
go back to reference Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). In: ICLR (2016). arXiv:​1511.​07289v5 Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). In: ICLR (2016). arXiv:​1511.​07289v5
11.
go back to reference Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele. B.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele. B.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)
12.
13.
go back to reference Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009) Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)
14.
go back to reference Denker, J.S., Gardner, W.R., Graf, H.P, Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D., BaIrd, H.S., Guyon I.: Neural Network Recognizer for Hand-Written Zip Code Digits. AT&T Bell Laboratories (1989) Denker, J.S., Gardner, W.R., Graf, H.P, Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D., BaIrd, H.S., Guyon I.: Neural Network Recognizer for Hand-Written Zip Code Digits. AT&T Bell Laboratories (1989)
15.
go back to reference Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes (VOC) challenge. In: IJCV 88(2), pp. 303–338 (2010) Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes (VOC) challenge. In: IJCV 88(2), pp. 303–338 (2010)
16.
go back to reference Everingham, M., Eslami, S.M.A., Gool, L.V., Williams, Ch.K.I., Winn, J., Zisserma, A.: The pascal visual object classes challenge a retrospective. In: IJCV 111(1), pp. 98–136 (2014) Everingham, M., Eslami, S.M.A., Gool, L.V., Williams, Ch.K.I., Winn, J., Zisserma, A.: The pascal visual object classes challenge a retrospective. In: IJCV 111(1), pp. 98–136 (2014)
18.
go back to reference Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014). arXiv:​1311.​2524v5 Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014). arXiv:​1311.​2524v5
19.
20.
go back to reference Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Proceedings of Advanced in NIPS, Montreal, Canada, pp. 1135–1143 (2015). arXiv:​1506.​02626v3 Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Proceedings of Advanced in NIPS, Montreal, Canada, pp. 1135–1143 (2015). arXiv:​1506.​02626v3
21.
go back to reference Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. In: ICLR (2016). arXiv:​1510.​00149v5 Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. In: ICLR (2016). arXiv:​1510.​00149v5
22.
go back to reference Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.: EIE: efficient inference engine on compressed deep neural network (2016). arXiv:​1602.​01528v1 Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.: EIE: efficient inference engine on compressed deep neural network (2016). arXiv:​1602.​01528v1
23.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV (2015). arXiv:​1502.​01852v1 He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV (2015). arXiv:​1502.​01852v1
27.
go back to reference He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: Proceedings of IEEE ICCV, vol. 2, pp. 1389–1397 (2017) He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: Proceedings of IEEE ICCV, vol. 2, pp. 1389–1397 (2017)
29.
go back to reference Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors (2012). arXiv:​1207.​0580 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors (2012). arXiv:​1207.​0580
30.
go back to reference Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: MobileNets: efficient convolutional neural networks for mobile vision applications. In: CoRR (2017). arXiv:​1704.​04861v1 Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: MobileNets: efficient convolutional neural networks for mobile vision applications. In: CoRR (2017). arXiv:​1704.​04861v1
31.
go back to reference Huang, G., Sun, Y., Liuy, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: ECCV (4), vol. 9908 of Lecture Notes in Computer Science, pp. 646–661 (2016). arXiv:​1603.​09382v3 Huang, G., Sun, Y., Liuy, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: ECCV (4), vol. 9908 of Lecture Notes in Computer Science, pp. 646–661 (2016). arXiv:​1603.​09382v3
33.
go back to reference Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., Murphy, K.: Speed/accuracy trade-offs for modern convolutional object detectors. In: CVPR (2017). arXiv:​1611.​10012v3 Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., Murphy, K.: Speed/accuracy trade-offs for modern convolutional object detectors. In: CVPR (2017). arXiv:​1611.​10012v3
34.
go back to reference Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural networks: training neural networks with low precision weights and activations. In: CoRR (2016). arXiv:​1609.​07061 Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural networks: training neural networks with low precision weights and activations. In: CoRR (2016). arXiv:​1609.​07061
37.
go back to reference Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1 MB model size. In: CoRR (2016). arXiv:​1602.​07360v4 Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1 MB model size. In: CoRR (2016). arXiv:​1602.​07360v4
38.
go back to reference Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, Lille, France, pp. 448–456 (2015) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, Lille, France, pp. 448–456 (2015)
39.
go back to reference Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of ACM International Conference on Multimedia, pp. 675–678 (2014). arXiv:​1408.​5093 Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of ACM International Conference on Multimedia, pp. 675–678 (2014). arXiv:​1408.​5093
40.
go back to reference Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical Report, University of Toronto (2009) Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical Report, University of Toronto (2009)
41.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 1097–1105 (2012)
42.
go back to reference Krizhevsky, A.: cuda-convnet: High-performance c++/cuda implementation of convolutional neural networks (2012) Krizhevsky, A.: cuda-convnet: High-performance c++/cuda implementation of convolutional neural networks (2012)
43.
go back to reference LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), pp. 541–551 (1989) LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), pp. 541–551 (1989)
44.
go back to reference LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), pp. 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), pp. 2278–2324 (1998)
45.
go back to reference Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., Zitnick, C.L.: Microsoft COCO: Common objects in context. In: ECCV (2014). arXiv:​1405.​0312v3 Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., Zitnick, C.L.: Microsoft COCO: Common objects in context. In: ECCV (2014). arXiv:​1405.​0312v3
46.
go back to reference Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017). arXiv:​1612.​03144v2 Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017). arXiv:​1612.​03144v2
49.
go back to reference Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.: SSD: single shot multibox detector. In: ECCV (2016) Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.: SSD: single shot multibox detector. In: ECCV (2016)
50.
go back to reference Liu, S., Jia, J., Fidler, S., Urtasun, R.: SGN: sequential grouping networks for instance segmentation. In: ICCV, pp. 3516–3524 (2017) Liu, S., Jia, J., Fidler, S., Urtasun, R.: SGN: sequential grouping networks for instance segmentation. In: ICCV, pp. 3516–3524 (2017)
51.
52.
53.
go back to reference Luo, W., Li, Y., Urtasun, R., Zemel, R.L.: Understanding the effective receptive field in deep convolutional neural networks. In: CoRR (2017). arXiv:​1701.​04128v2 Luo, W., Li, Y., Urtasun, R., Zemel, R.L.: Understanding the effective receptive field in deep convolutional neural networks. In: CoRR (2017). arXiv:​1701.​04128v2
54.
go back to reference Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML (2013) Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML (2013)
55.
go back to reference Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., Maaten, L.: Exploring the limits of weakly supervised pretraining. In: ECCV (2), vol. 11206 of Lecture Notes in Computer Science, pp. 185–201 (2018). arXiv:​1805.​00932v1 Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., Maaten, L.: Exploring the limits of weakly supervised pretraining. In: ECCV (2), vol. 11206 of Lecture Notes in Computer Science, pp. 185–201 (2018). arXiv:​1805.​00932v1
56.
go back to reference Markidis, S., Chien, S.W.D., Laure, E., Peng, I.B., Vetter, J.S.: NVIDIA tensor core programmability, performance & precision. In: IEEE IPDPS Workshops, pp. 522–531 (2018). arXiv:​1803.​04014v1 Markidis, S., Chien, S.W.D., Laure, E., Peng, I.B., Vetter, J.S.: NVIDIA tensor core programmability, performance & precision. In: IEEE IPDPS Workshops, pp. 522–531 (2018). arXiv:​1803.​04014v1
57.
go back to reference Mavromoustakis, C.X., Batalla, J.M., Mastorakis, G., Markakis, E., Pallis, E.: Socially oriented edge computing for energy awareness in IoT architectures. IEEE Commun. Mag. 56(7), pp. 139–145 (2018) Mavromoustakis, C.X., Batalla, J.M., Mastorakis, G., Markakis, E., Pallis, E.: Socially oriented edge computing for energy awareness in IoT architectures. IEEE Commun. Mag. 56(7), pp. 139–145 (2018)
58.
59.
go back to reference Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th ICML, pp. 807–814 (2010) Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th ICML, pp. 807–814 (2010)
60.
go back to reference Neuhold, G., Ollmann, T., Bulo, S.R., Kontschieder, P.: The mapillary vistas dataset for semantic understanding of street scenes. In: ICCV (2017) Neuhold, G., Ollmann, T., Bulo, S.R., Kontschieder, P.: The mapillary vistas dataset for semantic understanding of street scenes. In: ICCV (2017)
61.
62.
go back to reference Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: ‘Large kernel matters—improve semantic segmentation by global convolutional network. In: CVPR, pp. 1743–1751 (2017). arXiv:​1703.​02719v1 Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: ‘Large kernel matters—improve semantic segmentation by global convolutional network. In: CVPR, pp. 1743–1751 (2017). arXiv:​1703.​02719v1
63.
go back to reference Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imagenet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M., (eds.) ECCV, vol. 4, pp. 525–542 (2016) Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imagenet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M., (eds.) ECCV, vol. 4, pp. 525–542 (2016)
64.
go back to reference Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788 (2016). arXiv:​1506.​02640v5 Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788 (2016). arXiv:​1506.​02640v5
66.
go back to reference Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99 (2015) Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99 (2015)
67.
68.
go back to reference Ruan, J., Hu, X., Huo, X., Shi, Y., Chan, F.T.S., Wang, X., Manogaran, G., Mastorakis, G., Mavromoustakis, C.X., Zhao, X.: An IoT-based E-business model of intelligent vegetable greenhouses and its key operations management issues. In: Neural Comput. Appl. 2019, pp. 1–16 (2019) Ruan, J., Hu, X., Huo, X., Shi, Y., Chan, F.T.S., Wang, X., Manogaran, G., Mastorakis, G., Mavromoustakis, C.X., Zhao, X.: An IoT-based E-business model of intelligent vegetable greenhouses and its key operations management issues. In: Neural Comput. Appl. 2019, pp. 1–16 (2019)
69.
go back to reference Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. In: Nature 323(6088), pp. 533–536 (1986) Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. In: Nature 323(6088), pp. 533–536 (1986)
70.
go back to reference Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. In: IJCV 115(3), pp. 211–252 (2015) Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. In: IJCV 115(3), pp. 211–252 (2015)
71.
go back to reference Sanchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. In: RR-8209, INRIA (2013) Sanchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. In: RR-8209, INRIA (2013)
72.
go back to reference Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: Inverted Residuals and Linear Bottlenecks. In: ‘CVPR’ IEEE Computer Society, pp. 4510–4520 (2018). arXiv:​1801.​04381v3 Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: Inverted Residuals and Linear Bottlenecks. In: ‘CVPR’ IEEE Computer Society, pp. 4510–4520 (2018). arXiv:​1801.​04381v3
74.
go back to reference Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. In: JMLR 15, pp. 1929–1958 (2014) Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. In: JMLR 15, pp. 1929–1958 (2014)
76.
go back to reference Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of ICCV (2017). arXiv:​1707.​02968v2 Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of ICCV (2017). arXiv:​1707.​02968v2
77.
go back to reference Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015). arXiv:​1409.​4842v1 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015). arXiv:​1409.​4842v1
78.
go back to reference Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016). arXiv:​1512.​00567v3 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016). arXiv:​1512.​00567v3
79.
go back to reference Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: ICLR Workshop, p. 12 (2016). arXiv:​1602.​07261v2 Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: ICLR Workshop, p. 12 (2016). arXiv:​1602.​07261v2
80.
go back to reference Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: CVPR (2014), pp. 1701–1708 (2014) Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: CVPR (2014), pp. 1701–1708 (2014)
81.
go back to reference Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. In: IJCV (2013) Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. In: IJCV (2013)
82.
go back to reference Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.: Caltech-UCSD Birds 200. Technical Report, Caltech (2010) Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.: Caltech-UCSD Birds 200. Technical Report, Caltech (2010)
83.
go back to reference Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 5987–5995 (2017). arXiv:​1611.​05431v2 Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 5987–5995 (2017). arXiv:​1611.​05431v2
85.
go back to reference Zhang, D., Yang, J., Ye, D., Hua, G.: Lq-nets: learned quantization for highly accurate and compact deep neural networks. In: Proceedings of ECCV (2018). arXiv:​1807.​10029v1 Zhang, D., Yang, J., Ye, D., Hua, G.: Lq-nets: learned quantization for highly accurate and compact deep neural networks. In: Proceedings of ECCV (2018). arXiv:​1807.​10029v1
87.
go back to reference Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: CVPR (2018). arXiv:​1707.​01083v2 Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: CVPR (2018). arXiv:​1707.​01083v2
89.
go back to reference Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization: towards lossless cnns with low-precision weights. In: Proceedings of ICLR (2017) Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization: towards lossless cnns with low-precision weights. In: Proceedings of ICLR (2017)
90.
go back to reference Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. In: IEEE TPAMI (2017) Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. In: IEEE TPAMI (2017)
91.
go back to reference Zhuang, B., Shen, Ch., Tan, M., Liu, L., Reid, I.: Structured binary neural networks for accurate image classification and semantic segmentation. In: CoRR (2018). arXiv:​1811.​10413v2 Zhuang, B., Shen, Ch., Tan, M., Liu, L., Reid, I.: Structured binary neural networks for accurate image classification and semantic segmentation. In: CoRR (2018). arXiv:​1811.​10413v2
Metadata
Title
AI Architectures for Very Smart Sensors
Authors
Peter Malík
Štefan Krištofík
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-44907-0_16

Premium Partner