Skip to main content
Top

2025 | OriginalPaper | Chapter

AI-Based Automotive Test Case Generation: An Action Research Study on Integration of Generative AI into Test Automation Frameworks

Authors : Albin Karlsson, Erik Lindmaa, Simin Sun, Miroslaw Staron

Published in: Product-Focused Software Process Improvement. Industry-, Workshop-, and Doctoral Symposium Papers

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Generative AI is transforming software development, particularly in unit and regression testing. However, it’s rarely used in Hardware-in-the-Loop (HIL) testing due to hardware-specific environments. This paper examines integrating GitHub Copilot into automotive test automation frameworks, focusing on Volvo’s Test Automation Framework (TAF). It explores how Copilot can automate test case generation and compares AI-generated test cases with manually written ones in terms of reliability and robustness. Using an iterative action research methodology, the study evaluates the functional suitability of AI-generated test cases and the challenges of integration. Results show that in the first iteration, 23% of AI-generated test cases passed in Jenkins and received high functionality scores. In the second iteration, this increased to 36%. These findings highlight the potential of Generative AI to enhance HIL testing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dakhel, A.M., Majdinasab, V., Nikanjam, A., Khomh, F., Desmarais, M.C., Jiang, Z.M.J.: GitHub copilot AI pair programmer: asset or liability? J. Syst. Softw. 203, 111734 (2023)CrossRef Dakhel, A.M., Majdinasab, V., Nikanjam, A., Khomh, F., Desmarais, M.C., Jiang, Z.M.J.: GitHub copilot AI pair programmer: asset or liability? J. Syst. Softw. 203, 111734 (2023)CrossRef
2.
go back to reference Ebert, C., Louridas, P.: Generative AI for software practitioners. IEEE Softw. 40(4), 30–38 (2023)CrossRef Ebert, C., Louridas, P.: Generative AI for software practitioners. IEEE Softw. 40(4), 30–38 (2023)CrossRef
3.
go back to reference Garousi, V., Felderer, M., Kuhrmann, M., Herkiloğlu, K., Eldh, S.: Exploring the industry’s challenges in software testing: an empirical study. J. Softw. Evol. Process 32(8), e2251 (2020)CrossRef Garousi, V., Felderer, M., Kuhrmann, M., Herkiloğlu, K., Eldh, S.: Exploring the industry’s challenges in software testing: an empirical study. J. Softw. Evol. Process 32(8), e2251 (2020)CrossRef
5.
go back to reference Haghighatkhah, A., Banijamali, A., Pakanen, O.P., Oivo, M., Kuvaja, P.: Automotive software engineering: a systematic mapping study. J. Syst. Softw. 128, 25–55 (2017)CrossRef Haghighatkhah, A., Banijamali, A., Pakanen, O.P., Oivo, M., Kuvaja, P.: Automotive software engineering: a systematic mapping study. J. Syst. Softw. 128, 25–55 (2017)CrossRef
6.
go back to reference Majdinasab, V., Bishop, M.J., Rasheed, S., Moradidakhel, A., Tahir, A., Khomh, F.: Assessing the security of GitHub copilot generated code–a targeted replication study. arXiv preprint arXiv:2311.11177 (2023) Majdinasab, V., Bishop, M.J., Rasheed, S., Moradidakhel, A., Tahir, A., Khomh, F.: Assessing the security of GitHub copilot generated code–a targeted replication study. arXiv preprint arXiv:​2311.​11177 (2023)
7.
go back to reference Ochodek, M., Hebig, R., Meding, W., Frost, G., Staron, M.: Chapter 8 recognizing lines of code violating company-specific coding guidelines using machine learning. In: Bosch, J., Carlson, J., Holmstrom Olsson, H., Sandahl, K., Staron, M. (eds.) Accelerating Digital Transformation: 10 Years of Software Center, pp. 211–251. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10873-0_11 Ochodek, M., Hebig, R., Meding, W., Frost, G., Staron, M.: Chapter 8 recognizing lines of code violating company-specific coding guidelines using machine learning. In: Bosch, J., Carlson, J., Holmstrom Olsson, H., Sandahl, K., Staron, M. (eds.) Accelerating Digital Transformation: 10 Years of Software Center, pp. 211–251. Springer, Cham (2022). https://​doi.​org/​10.​1007/​978-3-031-10873-0_​11
8.
go back to reference Panichella, A., Kifetew, F.M., Tonella, P.: Automated test case generation as a many-objective optimisation problem with dynamic selection of the targets. IEEE Trans. Software Eng. 44(2), 122–158 (2017)CrossRef Panichella, A., Kifetew, F.M., Tonella, P.: Automated test case generation as a many-objective optimisation problem with dynamic selection of the targets. IEEE Trans. Software Eng. 44(2), 122–158 (2017)CrossRef
9.
go back to reference Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., Karri, R.: Asleep at the keyboard? Assessing the security of GitHub copilot’s code contributions. In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 754–768. IEEE (2022) Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., Karri, R.: Asleep at the keyboard? Assessing the security of GitHub copilot’s code contributions. In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 754–768. IEEE (2022)
10.
go back to reference Reynolds, L., McDonell, K.: Prompt programming for large language models: beyond the few-shot paradigm. In: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–7 (2021) Reynolds, L., McDonell, K.: Prompt programming for large language models: beyond the few-shot paradigm. In: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–7 (2021)
11.
go back to reference Schäfer, M., Nadi, S., Eghbali, A., Tip, F.: An empirical evaluation of using large language models for automated unit test generation. IEEE Trans. Software Eng. 50, 85–105 (2023)CrossRef Schäfer, M., Nadi, S., Eghbali, A., Tip, F.: An empirical evaluation of using large language models for automated unit test generation. IEEE Trans. Software Eng. 50, 85–105 (2023)CrossRef
12.
go back to reference Shin, K.W., Kim, S.S., Lim, D.J.: Automatic test-case generation for hardware-in-the-loop testing of automotive body control modules. Technical report, SAE Technical Paper (2013) Shin, K.W., Kim, S.S., Lim, D.J.: Automatic test-case generation for hardware-in-the-loop testing of automotive body control modules. Technical report, SAE Technical Paper (2013)
13.
go back to reference Siddiq, M.L., Majumder, S.H., Mim, M.R., Jajodia, S., Santos, J.C.: An empirical study of code smells in transformer-based code generation techniques. In: 2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM), pp. 71–82. IEEE (2022) Siddiq, M.L., Majumder, S.H., Mim, M.R., Jajodia, S., Santos, J.C.: An empirical study of code smells in transformer-based code generation techniques. In: 2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM), pp. 71–82. IEEE (2022)
15.
go back to reference Staron, M.: Automotive Software Architectures. Springer, Cham (2021) Staron, M.: Automotive Software Architectures. Springer, Cham (2021)
16.
go back to reference Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017) Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
17.
18.
go back to reference Zhang, B., Liang, P., Zhou, X., Ahmad, A., Waseem, M.: Practices and challenges of using GitHub copilot: an empirical study. arXiv preprint arXiv:2303.08733 (2023) Zhang, B., Liang, P., Zhou, X., Ahmad, A., Waseem, M.: Practices and challenges of using GitHub copilot: an empirical study. arXiv preprint arXiv:​2303.​08733 (2023)
Metadata
Title
AI-Based Automotive Test Case Generation: An Action Research Study on Integration of Generative AI into Test Automation Frameworks
Authors
Albin Karlsson
Erik Lindmaa
Simin Sun
Miroslaw Staron
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-78392-0_4

Premium Partner