Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

09-11-2020 | Issue 6/2021

The Journal of Supercomputing 6/2021

Air quality monitoring and analysis with dynamic training using deep learning

Journal:
The Journal of Supercomputing > Issue 6/2021
Authors:
Endah Kristiani, Ching-Fang Lee, Chao-Tung Yang, Chin-Yin Huang, Yu-Tse Tsan, Wei-Cheng Chan
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Time series prediction is a challenging predictive modeling case. It is essential to have a prediction model that can adapt to dynamic data. Air quality data show a significant changing degree of spatial and temporal data. Therefore, the updated deep learning model is suitable for this case. In this paper, monitoring and analysis of air quality with dynamic training using recurrent neural network (RNN) are proposed to provide the model remains up-to-date as new data comes. In the experiments, by adjusting the model, the accuracy is enhanced. The scheduling retrained model is provided based on the expected mean absolute percentage error (MAPE) value. First, the machine learning architecture environment is being prepared. Secondly, the RNN parameters were optimized for excellent level predictive precision. Third, set and test the scheduling and MAPE value based on the MAPE’s expected value for the automatic retraining model. Finally, on the interactive map, the output is presented using R and Shiny to visualize the RNN training results.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2021

The Journal of Supercomputing 6/2021 Go to the issue

Premium Partner

    Image Credits