Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

Airborne Nanoparticles: Control and Detection

Authors : Mohsen Rezaei, Matthew Stanley Johnson

Published in: Air Pollution Sources, Statistics and Health Effects

Publisher: Springer US

Excerpt

Air pollution
“is the presence in the outdoor atmosphere of any one or more substances in quantities which are or may be harmful or injurious to human health or welfare, animal or plant life or property or unreasonably interfere with the enjoyment of life or property, outdoor recreation” [ 1].
Aerosol
is a solid or liquid particle suspended in a gas. Such particles may be produced directly, for example, from combustion or indirectly from gas-to-particle conversion. The former is primary aerosol and the latter secondary aerosol [ 2]. There are multiple processing mechanisms in the atmospheric including exchange with the gas phase and coagulation.
Nanoparticle
is a size category of aerosol particles with diameter between 1 and 100 nm [ 2].
Anthropogenic emissions
include man-made pollution from activities such as transportation, cooking and heating, industry, and energy production, involving combustion of fossil fuel and biomass. Human activities can be the main primary source of airborne nanoparticles both indoors and outdoors [ 3].
Filtration efficiency
characterizes the performance of a filter or any process that can trap particles passing through it. It can be determined by measuring mass or number density of particles before and after filtration, for a specific source or as a function of particle size [ 4] .
Particle coagulation
when there is a large number of concentrations of airborne particles, they move by Brownian or turbulent diffusion; thereby their collisions increase with each other, resulting in sometimes aggregate clusters or a single new larger particle [ 1].
Nanoparticle characterization
is a subfield of atmospheric science and technology that uses determinations of the physical and chemical properties of nanoparticles to characterize their behavior and impacts [ 5].
Impaction
when a particle is large and dense, its inertia will cause it to remain in the streamlines to be collided with the object. This is called impaction [ 1].
Light scattering
scattering of light as a result of collisions with particles called light scattering [ 5].
Electrical mobility
“when a charged particle is exposed to an electric field, it will migrate at a velocity that is determined by a balance between the resulting electrostatic force and aerodynamic drag that resists its motion. This characteristic migration velocity is described as the electrical mobility of the particle” [ 5].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cooper CD, Alley FC (2010) Air pollution control: a design approach. Waveland Press, Long Grove Illinois, USA Cooper CD, Alley FC (2010) Air pollution control: a design approach. Waveland Press, Long Grove Illinois, USA
2.
go back to reference Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, New York Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, New York
3.
go back to reference Biswas P, Wu C-Y (2005) Nanoparticles and the environment. J Air Waste Manage Assoc 55(6):708–746 Biswas P, Wu C-Y (2005) Nanoparticles and the environment. J Air Waste Manage Assoc 55(6):708–746
4.
go back to reference Mao X, Bai Y, Yu J, Ding B (2016) Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration. J Am Ceram Soc 99(8):2760–2768 Mao X, Bai Y, Yu J, Ding B (2016) Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration. J Am Ceram Soc 99(8):2760–2768
5.
go back to reference Kulkarni P, Baron PA, Willeke K (2011) Aerosol measurement: principles, techniques, and applications. Wiley, Hoboken Kulkarni P, Baron PA, Willeke K (2011) Aerosol measurement: principles, techniques, and applications. Wiley, Hoboken
6.
go back to reference Liu J-Y, Hsiao T-C, Lee K-Y, Chuang H-C, Cheng T-J, Chuang K-J (2018) Association of ultrafine particles with cardiopulmonary health among adult subjects in the urban areas of northern Taiwan. Sci Total Environ 627:211–215 Liu J-Y, Hsiao T-C, Lee K-Y, Chuang H-C, Cheng T-J, Chuang K-J (2018) Association of ultrafine particles with cardiopulmonary health among adult subjects in the urban areas of northern Taiwan. Sci Total Environ 627:211–215
7.
go back to reference Chen R, Hu B, Liu Y, Xu J, Yang G, Xu D, Chen C (2016) Beyond PM2. 5: the role of ultrafine particles on adverse health effects of air pollution. Biochimica et Biophysica Acta (BBA)-General Subjects 1860(12):2844–2855 Chen R, Hu B, Liu Y, Xu J, Yang G, Xu D, Chen C (2016) Beyond PM2. 5: the role of ultrafine particles on adverse health effects of air pollution. Biochimica et Biophysica Acta (BBA)-General Subjects 1860(12):2844–2855
8.
go back to reference Stafoggia M, Schneider A, Cyrys J, Samoli E, Andersen ZJ, Bedada GB, Bellander T, Cattani G, Eleftheriadis K, Faustini A (2017) Association between short-term exposure to ultrafine particles and mortality in eight European urban areas. Epidemiology 28(2):172–180 Stafoggia M, Schneider A, Cyrys J, Samoli E, Andersen ZJ, Bedada GB, Bellander T, Cattani G, Eleftheriadis K, Faustini A (2017) Association between short-term exposure to ultrafine particles and mortality in eight European urban areas. Epidemiology 28(2):172–180
9.
go back to reference Tobías A, Rivas I, Reche C, Alastuey A, Rodríguez S, Fernández-Camacho R, de la Campa AMS, de la Rosa J, Sunyer J, Querol X (2018) Short-term effects of ultrafine particles on daily mortality by primary vehicle exhaust versus secondary origin in three Spanish cities. Environ Int 111:144–151 Tobías A, Rivas I, Reche C, Alastuey A, Rodríguez S, Fernández-Camacho R, de la Campa AMS, de la Rosa J, Sunyer J, Querol X (2018) Short-term effects of ultrafine particles on daily mortality by primary vehicle exhaust versus secondary origin in three Spanish cities. Environ Int 111:144–151
10.
go back to reference Heinzerling A, Hsu J, Yip F (2016) Respiratory health effects of ultrafine particles in children: a literature review. Water Air Soil Pollut 227(1):32 CrossRef Heinzerling A, Hsu J, Yip F (2016) Respiratory health effects of ultrafine particles in children: a literature review. Water Air Soil Pollut 227(1):32 CrossRef
11.
go back to reference Samet JM, Graff D, Berntsen J, Ghio AJ, Huang Y-CT, Devlin RB (2007) A comparison of studies on the effects of controlled exposure to fine, coarse and ultrafine ambient particulate matter from a single location. Inhal Toxicol 19(sup1):29–32 CrossRef Samet JM, Graff D, Berntsen J, Ghio AJ, Huang Y-CT, Devlin RB (2007) A comparison of studies on the effects of controlled exposure to fine, coarse and ultrafine ambient particulate matter from a single location. Inhal Toxicol 19(sup1):29–32 CrossRef
12.
go back to reference Liu Q, Liu D, Chen X, Zhang Q, Jiang J, Chen D-R (2019) A cost-effective, miniature electrical ultrafine particle sizer (mini-eUPS) for ultrafine particle (UFP) monitoring network. Aerosol Air Qual Res (AAQR) 23:24 Liu Q, Liu D, Chen X, Zhang Q, Jiang J, Chen D-R (2019) A cost-effective, miniature electrical ultrafine particle sizer (mini-eUPS) for ultrafine particle (UFP) monitoring network. Aerosol Air Qual Res (AAQR) 23:24
13.
go back to reference Du Y, Xu X, Chu M, Guo Y, Wang J (2016) Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis 8(1):E8 Du Y, Xu X, Chu M, Guo Y, Wang J (2016) Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis 8(1):E8
14.
go back to reference Li Y, Chen Q, Zhao H, Wang L, Tao R (2015) Variations in PM10, PM2. 5 and PM1. 0 in an urban area of the Sichuan Basin and their relation to meteorological factors. Atmosphere 6(1):150–163 CrossRef Li Y, Chen Q, Zhao H, Wang L, Tao R (2015) Variations in PM10, PM2. 5 and PM1. 0 in an urban area of the Sichuan Basin and their relation to meteorological factors. Atmosphere 6(1):150–163 CrossRef
15.
go back to reference Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839 CrossRef Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839 CrossRef
16.
go back to reference Dhananjayan V, Ravichandran B, Sen S, Panjakumar K (2019) Source, effect, and risk assessment of nanoparticles with special reference to occupational exposure. In: Nanoarchitectonics in biomedicine. William Andrew Publishing, Norwich NY, USA, pp 643–676 Dhananjayan V, Ravichandran B, Sen S, Panjakumar K (2019) Source, effect, and risk assessment of nanoparticles with special reference to occupational exposure. In: Nanoarchitectonics in biomedicine. William Andrew Publishing, Norwich NY, USA, pp 643–676
17.
go back to reference Knudsen KB, Northeved H, Ek PK, Permin A, Andresen TL, Larsen S, Wegener KM, Lam HR, Lykkesfeldt J (2014) Differential toxicological response to positively and negatively charged nanoparticles in the rat brain. Nanotoxicology 8(7):764–774 Knudsen KB, Northeved H, Ek PK, Permin A, Andresen TL, Larsen S, Wegener KM, Lam HR, Lykkesfeldt J (2014) Differential toxicological response to positively and negatively charged nanoparticles in the rat brain. Nanotoxicology 8(7):764–774
18.
go back to reference Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111(4):455–460 CrossRef Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111(4):455–460 CrossRef
19.
go back to reference Manigrasso M, Vernale C, Avino P (2017) Traffic aerosol lobar doses deposited in the human respiratory system. Environ Sci Pollut Res 24(16):13866–13873 CrossRef Manigrasso M, Vernale C, Avino P (2017) Traffic aerosol lobar doses deposited in the human respiratory system. Environ Sci Pollut Res 24(16):13866–13873 CrossRef
20.
go back to reference Pekkanen J, Timonen KL, Ruuskanen J, Reponen A, Mirme A (1997) Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environ Res 74(1):24–33 CrossRef Pekkanen J, Timonen KL, Ruuskanen J, Reponen A, Mirme A (1997) Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environ Res 74(1):24–33 CrossRef
21.
go back to reference Tiittanen P, Timonen K, Ruuskanen J, Mirme A, Pekkanen J (1999) Fine particulate air pollution, resuspended road dust and respiratory health among symptomatic children. Eur Respir J 13(2):266–273 CrossRef Tiittanen P, Timonen K, Ruuskanen J, Mirme A, Pekkanen J (1999) Fine particulate air pollution, resuspended road dust and respiratory health among symptomatic children. Eur Respir J 13(2):266–273 CrossRef
22.
go back to reference Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175(3):191–199 CrossRef Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175(3):191–199 CrossRef
23.
go back to reference Agranovski I (2011) Aerosols: science and technology. Wiley, Weinheim Agranovski I (2011) Aerosols: science and technology. Wiley, Weinheim
24.
go back to reference Hinds WC (2012) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, Los Angeles Hinds WC (2012) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, Los Angeles
25.
go back to reference Ardkapan SR, Johnson MS, Yazdi S, Afshari A, Bergsøe NC (2014) Filtration efficiency of an electrostatic fibrous filter: studying filtration dependency on ultrafine particle exposure and composition. J Aerosol Sci 72:14–20 CrossRef Ardkapan SR, Johnson MS, Yazdi S, Afshari A, Bergsøe NC (2014) Filtration efficiency of an electrostatic fibrous filter: studying filtration dependency on ultrafine particle exposure and composition. J Aerosol Sci 72:14–20 CrossRef
26.
go back to reference Zhang R, Wei F (2019) High-efficiency particulate air filters based on carbon nanotubes. In: Nanotube superfiber materials. William Andrew Publishing, Norwich NY, USA, pp 643–666 Zhang R, Wei F (2019) High-efficiency particulate air filters based on carbon nanotubes. In: Nanotube superfiber materials. William Andrew Publishing, Norwich NY, USA, pp 643–666
27.
go back to reference Viswanathan G, Kane DB, Lipowicz PJ (2004) High efficiency fine particulate filtration using carbon nanotube coatings. Adv Mater 16(22):2045–2049 CrossRef Viswanathan G, Kane DB, Lipowicz PJ (2004) High efficiency fine particulate filtration using carbon nanotube coatings. Adv Mater 16(22):2045–2049 CrossRef
28.
go back to reference Chen CY (1955) Filtration of aerosols by fibrous media. Chem Rev 55(3):595–623 CrossRef Chen CY (1955) Filtration of aerosols by fibrous media. Chem Rev 55(3):595–623 CrossRef
29.
go back to reference Zhang S, Rind NA, Tang N, Liu H, Yin X, Yu J, Ding B (2019) Electrospun nanofibers for air filtration. In: Electrospinning: nanofabrication and applications. William Andrew Publishing, Norwich NY, USA, pp 365–389 Zhang S, Rind NA, Tang N, Liu H, Yin X, Yu J, Ding B (2019) Electrospun nanofibers for air filtration. In: Electrospinning: nanofabrication and applications. William Andrew Publishing, Norwich NY, USA, pp 365–389
30.
go back to reference Wang C-S, Otani Y (2012) Removal of nanoparticles from gas streams by fibrous filters: a review. Ind Eng Chem Res 52(1):5–17 Wang C-S, Otani Y (2012) Removal of nanoparticles from gas streams by fibrous filters: a review. Ind Eng Chem Res 52(1):5–17
31.
go back to reference Sambaer W, Zatloukal M, Kimmer D (2011) 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process. Chem Eng Sci 66(4):613–623 Sambaer W, Zatloukal M, Kimmer D (2011) 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process. Chem Eng Sci 66(4):613–623
32.
go back to reference Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloids Surf Physicochem Eng Aspects 187:469–481 Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloids Surf Physicochem Eng Aspects 187:469–481
33.
go back to reference Kadam VV, Wang L, Padhye R (2018) Electrospun nanofibre materials to filter air pollutants–a review. J Ind Text 47(8):2253–2280 Kadam VV, Wang L, Padhye R (2018) Electrospun nanofibre materials to filter air pollutants–a review. J Ind Text 47(8):2253–2280
34.
go back to reference Liu Q, Zhu J, Zhang L, Qiu Y (2018) Recent advances in energy materials by electrospinning. Renew Sust Energ Rev 81:1825–1858 Liu Q, Zhu J, Zhang L, Qiu Y (2018) Recent advances in energy materials by electrospinning. Renew Sust Energ Rev 81:1825–1858
35.
go back to reference Leung WW-F, Hung C-H, Yuen P-T (2010) Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Sep Purif Technol 71(1):30–37 Leung WW-F, Hung C-H, Yuen P-T (2010) Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Sep Purif Technol 71(1):30–37
36.
go back to reference Zhang S, Liu H, Zuo F, Yin X, Yu J, Ding B (2017) A controlled design of ripple-like polyamide-6 nanofiber/nets membrane for high-efficiency air filter. Small 13(10):1603151 Zhang S, Liu H, Zuo F, Yin X, Yu J, Ding B (2017) A controlled design of ripple-like polyamide-6 nanofiber/nets membrane for high-efficiency air filter. Small 13(10):1603151
37.
go back to reference Wan H, Wang N, Yang J, Si Y, Chen K, Ding B, Sun G, El-Newehy M, Al-Deyab SS, Yu J (2014) Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance. J Colloid Interface Sci 417:18–26 Wan H, Wang N, Yang J, Si Y, Chen K, Ding B, Sun G, El-Newehy M, Al-Deyab SS, Yu J (2014) Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance. J Colloid Interface Sci 417:18–26
38.
go back to reference Choi H-J, Kumita M, Hayashi S, Yuasa H, Kamiyama M, Seto T, Tsai C-J, Otani Y (2017) Filtration properties of nanofiber/microfiber mixed filter and prediction of its performance. Aerosol Air Qual Res 17:1052–1062 Choi H-J, Kumita M, Hayashi S, Yuasa H, Kamiyama M, Seto T, Tsai C-J, Otani Y (2017) Filtration properties of nanofiber/microfiber mixed filter and prediction of its performance. Aerosol Air Qual Res 17:1052–1062
40.
go back to reference Grafe TH, Graham KM (2003) Nanofiber webs from electrospinning. In: Nonwovens in filtration-fifth international conference, Stuttgart, 2003, pp 1–5 Grafe TH, Graham KM (2003) Nanofiber webs from electrospinning. In: Nonwovens in filtration-fifth international conference, Stuttgart, 2003, pp 1–5
41.
go back to reference Morozov VN, Mikheev AY (2012) Water-soluble polyvinylpyrrolidone nanofilters manufactured by electrospray-neutralization technique. J Membr Sci 403:110–120 Morozov VN, Mikheev AY (2012) Water-soluble polyvinylpyrrolidone nanofilters manufactured by electrospray-neutralization technique. J Membr Sci 403:110–120
42.
go back to reference Liu Y, Park M, Ding B, Kim J, El-Newehy M, Al-Deyab SS, Kim H-Y (2015) Facile electrospun polyacrylonitrile/poly (acrylic acid) nanofibrous membranes for high efficiency particulate air filtration. Fiber Polym 16(3):629–633 Liu Y, Park M, Ding B, Kim J, El-Newehy M, Al-Deyab SS, Kim H-Y (2015) Facile electrospun polyacrylonitrile/poly (acrylic acid) nanofibrous membranes for high efficiency particulate air filtration. Fiber Polym 16(3):629–633
43.
go back to reference Wang Z, Zhao C, Pan Z (2015) Porous bead-on-string poly (lactic acid) fibrous membranes for air filtration. J Colloid Interface Sci 441:121–129 Wang Z, Zhao C, Pan Z (2015) Porous bead-on-string poly (lactic acid) fibrous membranes for air filtration. J Colloid Interface Sci 441:121–129
44.
go back to reference Li X, Kong H, He J (2015) Study on highly filtration efficiency of electrospun polyvinyl alcohol micro-porous webs. Indian J Phys 89(2):175–179 Li X, Kong H, He J (2015) Study on highly filtration efficiency of electrospun polyvinyl alcohol micro-porous webs. Indian J Phys 89(2):175–179
45.
go back to reference Wang N, Zhu Z, Sheng J, Al-Deyab SS, Yu J, Ding B (2014) Superamphiphobic nanofibrous membranes for effective filtration of fine particles. J Colloid Interface Sci 428:41–48 Wang N, Zhu Z, Sheng J, Al-Deyab SS, Yu J, Ding B (2014) Superamphiphobic nanofibrous membranes for effective filtration of fine particles. J Colloid Interface Sci 428:41–48
46.
go back to reference Zhang S, Liu H, Yu J, Luo W, Ding B (2016) Microwave structured polyamide-6 nanofiber/net membrane with embedded poly (m-phenylene isophthalamide) staple fibers for effective ultrafine particle filtration. J Mater Chem A 4(16):6149–6157 Zhang S, Liu H, Yu J, Luo W, Ding B (2016) Microwave structured polyamide-6 nanofiber/net membrane with embedded poly (m-phenylene isophthalamide) staple fibers for effective ultrafine particle filtration. J Mater Chem A 4(16):6149–6157
47.
go back to reference Li P, Wang C, Zhang Y, Wei F (2014) Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes. Small 10(22):4543–4561 Li P, Wang C, Zhang Y, Wei F (2014) Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes. Small 10(22):4543–4561
48.
go back to reference Wang H, Zheng G-F, Wang X, Sun D-H (2010) Study on the air filtration performance of nanofibrous membranes compared with conventional fibrous filters. In: 2010 IEEE 5th international conference on nano/micro engineered and molecular systems, 2010. IEEE, pp 387–390 Wang H, Zheng G-F, Wang X, Sun D-H (2010) Study on the air filtration performance of nanofibrous membranes compared with conventional fibrous filters. In: 2010 IEEE 5th international conference on nano/micro engineered and molecular systems, 2010. IEEE, pp 387–390
49.
go back to reference Kim K, Lee C, Kim IW, Kim J (2009) Performance modification of a melt-blown filter medium via an additional nano-web layer prepared by electrospinning. Fiber Polym 10(1):60–64 Kim K, Lee C, Kim IW, Kim J (2009) Performance modification of a melt-blown filter medium via an additional nano-web layer prepared by electrospinning. Fiber Polym 10(1):60–64
50.
go back to reference Wang S-X, Yap CC, He J, Chen C, Wong SY, Li X (2016) Electrospinning: a facile technique for fabricating functional nanofibers for environmental applications. Nanotechnol Rev 5(1):51–73 Wang S-X, Yap CC, He J, Chen C, Wong SY, Li X (2016) Electrospinning: a facile technique for fabricating functional nanofibers for environmental applications. Nanotechnol Rev 5(1):51–73
51.
go back to reference Zhang Q, Welch J, Park H, Wu C-Y, Sigmund W, Marijnissen JC (2010) Improvement in nanofiber filtration by multiple thin layers of nanofiber mats. J Aerosol Sci 41(2):230–236 Zhang Q, Welch J, Park H, Wu C-Y, Sigmund W, Marijnissen JC (2010) Improvement in nanofiber filtration by multiple thin layers of nanofiber mats. J Aerosol Sci 41(2):230–236
52.
go back to reference Yun KM, Hogan CJ Jr, Matsubayashi Y, Kawabe M, Iskandar F, Okuyama K (2007) Nanoparticle filtration by electrospun polymer fibers. Chem Eng Sci 62(17):4751–4759 Yun KM, Hogan CJ Jr, Matsubayashi Y, Kawabe M, Iskandar F, Okuyama K (2007) Nanoparticle filtration by electrospun polymer fibers. Chem Eng Sci 62(17):4751–4759
53.
go back to reference Hung C-H, Leung WW-F (2011) Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime. Sep Purif Technol 79(1):34–42 Hung C-H, Leung WW-F (2011) Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime. Sep Purif Technol 79(1):34–42
54.
go back to reference Wang S, Zhao X, Yin X, Yu J, Ding B (2016) Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration. ACS Appl Mater Interfaces 8(36):23985–23994 Wang S, Zhao X, Yin X, Yu J, Ding B (2016) Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration. ACS Appl Mater Interfaces 8(36):23985–23994
55.
go back to reference Bortolassi ACC, Nagarajan S, de Araújo Lima B, Guerra VG, Aguiar ML, Huon V, Soussan L, Cornu D, Miele P, Bechelany M (2019) Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Mater Sci Eng C 102:718–729 Bortolassi ACC, Nagarajan S, de Araújo Lima B, Guerra VG, Aguiar ML, Huon V, Soussan L, Cornu D, Miele P, Bechelany M (2019) Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Mater Sci Eng C 102:718–729
56.
go back to reference Liu C, Hsu P-C, Lee H-W, Ye M, Zheng G, Liu N, Li W, Cui Y (2015) Transparent air filter for high-efficiency PM 2.5 capture. Nat Commun 6:6205 Liu C, Hsu P-C, Lee H-W, Ye M, Zheng G, Liu N, Li W, Cui Y (2015) Transparent air filter for high-efficiency PM 2.5 capture. Nat Commun 6:6205
57.
go back to reference Vitchuli N, Shi Q, Nowak J, McCord M, Bourham M, Zhang X (2010) Electrospun ultrathin nylon fibers for protective applications. J Appl Polym Sci 116(4):2181–2187 Vitchuli N, Shi Q, Nowak J, McCord M, Bourham M, Zhang X (2010) Electrospun ultrathin nylon fibers for protective applications. J Appl Polym Sci 116(4):2181–2187
58.
go back to reference Kuo Y-Y, Bruno FC, Wang J (2014) Filtration performance against nanoparticles by electrospun nylon-6 media containing ultrathin nanofibers. Aerosol Sci Technol 48(12):1332–1344 Kuo Y-Y, Bruno FC, Wang J (2014) Filtration performance against nanoparticles by electrospun nylon-6 media containing ultrathin nanofibers. Aerosol Sci Technol 48(12):1332–1344
59.
go back to reference Wang N, Yang Y, Al-Deyab SS, El-Newehy M, Yu J, Ding B (2015) Ultra-light 3D nanofibre-nets binary structured nylon 6–polyacrylonitrile membranes for efficient filtration of fine particulate matter. J Mater Chem A 3(47):23946–23954 Wang N, Yang Y, Al-Deyab SS, El-Newehy M, Yu J, Ding B (2015) Ultra-light 3D nanofibre-nets binary structured nylon 6–polyacrylonitrile membranes for efficient filtration of fine particulate matter. J Mater Chem A 3(47):23946–23954
60.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56 Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56
61.
go back to reference Nasibulin AG, Kaskela A, Mustonen K, Anisimov AS, Ruiz V, Kivisto S, Rackauskas S, Timmermans MY, Pudas M, Aitchison B (2011) Multifunctional free-standing single-walled carbon nanotube films. ACS Nano 5(4):3214–3221 Nasibulin AG, Kaskela A, Mustonen K, Anisimov AS, Ruiz V, Kivisto S, Rackauskas S, Timmermans MY, Pudas M, Aitchison B (2011) Multifunctional free-standing single-walled carbon nanotube films. ACS Nano 5(4):3214–3221
62.
go back to reference Yildiz O, Bradford PD (2013) Aligned carbon nanotube sheet high efficiency particulate air filters. Carbon 64:295–304 Yildiz O, Bradford PD (2013) Aligned carbon nanotube sheet high efficiency particulate air filters. Carbon 64:295–304
63.
go back to reference Li P, Zong Y, Zhang Y, Yang M, Zhang R, Li S, Wei F (2013) In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency. Nanoscale 5(8):3367–3372 Li P, Zong Y, Zhang Y, Yang M, Zhang R, Li S, Wei F (2013) In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency. Nanoscale 5(8):3367–3372
64.
go back to reference Zhao Y, Low Z-X, Feng S, Zhong Z, Wang Y, Yao Z (2017) Multifunctional hybrid porous filters with hierarchical structures for simultaneous removal of indoor VOCs, dusts and microorganisms. Nanoscale 9(17):5433–5444 Zhao Y, Low Z-X, Feng S, Zhong Z, Wang Y, Yao Z (2017) Multifunctional hybrid porous filters with hierarchical structures for simultaneous removal of indoor VOCs, dusts and microorganisms. Nanoscale 9(17):5433–5444
65.
go back to reference Yang S, Zhu Z, Wei F, Yang X (2017) Carbon nanotubes/activated carbon fiber based air filter media for simultaneous removal of particulate matter and ozone. Build Environ 125:60–66 Yang S, Zhu Z, Wei F, Yang X (2017) Carbon nanotubes/activated carbon fiber based air filter media for simultaneous removal of particulate matter and ozone. Build Environ 125:60–66
66.
go back to reference Park JH, Yoon KY, Na H, Kim YS, Hwang J, Kim J, Yoon YH (2011) Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy. Sci Total Environ 409(19):4132–4138 Park JH, Yoon KY, Na H, Kim YS, Hwang J, Kim J, Yoon YH (2011) Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy. Sci Total Environ 409(19):4132–4138
67.
go back to reference Karwa AN, Tatarchuk BJ (2012) Aerosol filtration enhancement using carbon nanostructures synthesized within a sintered nickel microfibrous matrix. Sep Purif Technol 87:84–94 Karwa AN, Tatarchuk BJ (2012) Aerosol filtration enhancement using carbon nanostructures synthesized within a sintered nickel microfibrous matrix. Sep Purif Technol 87:84–94
68.
go back to reference Li P, Wang C, Li Z, Zong Y, Zhang Y, Yang X, Li S, Wei F (2014) Hierarchical carbon-nanotube/quartz-fiber films with gradient nanostructures for high efficiency and long service life air filters. RSC Adv 4(96):54115–54121 Li P, Wang C, Li Z, Zong Y, Zhang Y, Yang X, Li S, Wei F (2014) Hierarchical carbon-nanotube/quartz-fiber films with gradient nanostructures for high efficiency and long service life air filters. RSC Adv 4(96):54115–54121
69.
go back to reference Wang C, Li P, Zong Y, Zhang Y, Li S, Wei F (2014) A high efficiency particulate air filter based on agglomerated carbon nanotube fluidized bed. Carbon 79:424–431 Wang C, Li P, Zong Y, Zhang Y, Li S, Wei F (2014) A high efficiency particulate air filter based on agglomerated carbon nanotube fluidized bed. Carbon 79:424–431
70.
go back to reference Schnelle KB Jr, Dunn RF, Ternes ME (2015) Air pollution control technology handbook. CRC press, Boca Raton Schnelle KB Jr, Dunn RF, Ternes ME (2015) Air pollution control technology handbook. CRC press, Boca Raton
71.
go back to reference Colls J, Tiwary A (2017) Air pollution: measurement, modelling and mitigation. CRC Press, London/New York Colls J, Tiwary A (2017) Air pollution: measurement, modelling and mitigation. CRC Press, London/New York
72.
go back to reference Zhuang Y, Kim YJ, Lee TG, Biswas P (2000) Experimental and theoretical studies of ultra-fine particle behavior in electrostatic precipitators. J Electrost 48(3–4):245–260 Zhuang Y, Kim YJ, Lee TG, Biswas P (2000) Experimental and theoretical studies of ultra-fine particle behavior in electrostatic precipitators. J Electrost 48(3–4):245–260
73.
go back to reference Kim J-H, Lee H-S, Kim H-H, Ogata A (2010) Electrospray with electrostatic precipitator enhances fine particles collection efficiency. J Electrost 68(4):305–310 Kim J-H, Lee H-S, Kim H-H, Ogata A (2010) Electrospray with electrostatic precipitator enhances fine particles collection efficiency. J Electrost 68(4):305–310
74.
go back to reference Dey L, Venkataraman C (2012) A wet electrostatic precipitator (WESP) for soft nanoparticle collection. Aerosol Sci Technol 46(7):750–759 Dey L, Venkataraman C (2012) A wet electrostatic precipitator (WESP) for soft nanoparticle collection. Aerosol Sci Technol 46(7):750–759
75.
go back to reference Chen T-M, Tsai C-J, Yan S-Y, Li S-N (2014) An efficient wet electrostatic precipitator for removing nanoparticles, submicron and micron-sized particles. Sep Purif Technol 136:27–35 Chen T-M, Tsai C-J, Yan S-Y, Li S-N (2014) An efficient wet electrostatic precipitator for removing nanoparticles, submicron and micron-sized particles. Sep Purif Technol 136:27–35
76.
go back to reference Huang S-H, Chen C-C (2003) Loading characteristics of a miniature wire-plate electrostatic precipitator. Aerosol Sci Technol 37(2):109–121 Huang S-H, Chen C-C (2003) Loading characteristics of a miniature wire-plate electrostatic precipitator. Aerosol Sci Technol 37(2):109–121
77.
go back to reference Jaworek A, Czech T, Rajch E, Lackowski M (2006) Laboratory studies of back-discharge in fly ash. J Electrost 64(5):326–337 Jaworek A, Czech T, Rajch E, Lackowski M (2006) Laboratory studies of back-discharge in fly ash. J Electrost 64(5):326–337
78.
go back to reference Li Z, Liu Y, Xing Y, Tran T-M-P, Le T-C, Tsai C-J (2015) Novel wire-on-plate electrostatic precipitator (WOP-EP) for controlling fine particle and nanoparticle pollution. Environ Sci Technol 49(14):8683–8690 Li Z, Liu Y, Xing Y, Tran T-M-P, Le T-C, Tsai C-J (2015) Novel wire-on-plate electrostatic precipitator (WOP-EP) for controlling fine particle and nanoparticle pollution. Environ Sci Technol 49(14):8683–8690
79.
go back to reference de Oliveira AE, Guerra VG (2018) Influence of particle concentration and residence time on the efficiency of nanoparticulate collection by electrostatic precipitation. J Electrost 96:1–9 de Oliveira AE, Guerra VG (2018) Influence of particle concentration and residence time on the efficiency of nanoparticulate collection by electrostatic precipitation. J Electrost 96:1–9
80.
go back to reference de Oliveira AE, Guerra VG (2019) Effect of low gas velocity on the nanoparticle collection performance of an electrostatic precipitator. Sep Sci Technol 54(7):1211–1220 de Oliveira AE, Guerra VG (2019) Effect of low gas velocity on the nanoparticle collection performance of an electrostatic precipitator. Sep Sci Technol 54(7):1211–1220
81.
go back to reference Naito M, Yokoyama T, Hosokawa K, Nogi K (2018) Nanoparticle technology handbook. Elsevier, Amsterdam Naito M, Yokoyama T, Hosokawa K, Nogi K (2018) Nanoparticle technology handbook. Elsevier, Amsterdam
82.
go back to reference Boddu S, Gutti V, Meyer R, Ghosh T, Tompson R, Loyalka S (2011) Carbon nanoparticle generation, collection, and characterization using a spark generator and a thermophoretic deposition cell. Nucl Technol 173(3):318–326 Boddu S, Gutti V, Meyer R, Ghosh T, Tompson R, Loyalka S (2011) Carbon nanoparticle generation, collection, and characterization using a spark generator and a thermophoretic deposition cell. Nucl Technol 173(3):318–326
83.
go back to reference Brown DP, Biswas P, Rubin SG (1994) Transport and deposition of particles in gas turbines: effects of convection, diffusion, thermophoresis, inertial impaction and coagulation. American Society of Mechanical Engineers, New York Brown DP, Biswas P, Rubin SG (1994) Transport and deposition of particles in gas turbines: effects of convection, diffusion, thermophoresis, inertial impaction and coagulation. American Society of Mechanical Engineers, New York
84.
go back to reference Tsai C-J, Lin J-S, Aggarwal SG, Chen D-R (2004) Thermophoretic deposition of particles in laminar and turbulent tube flows. Aerosol Sci Technol 38(2):131–139 Tsai C-J, Lin J-S, Aggarwal SG, Chen D-R (2004) Thermophoretic deposition of particles in laminar and turbulent tube flows. Aerosol Sci Technol 38(2):131–139
85.
go back to reference Tsai C-J, Lu H-C (1995) Design and evaluation of a plate-to-plate thermophoretic precipitator. Aerosol Sci Technol 22(2):172–180 Tsai C-J, Lu H-C (1995) Design and evaluation of a plate-to-plate thermophoretic precipitator. Aerosol Sci Technol 22(2):172–180
86.
go back to reference Gonzalez D, Nasibulin AG, Baklanov AM, Shandakov SD, Brown DP, Queipo P, Kauppinen EI (2005) A new thermophoretic precipitator for collection of nanometer-sized aerosol particles. Aerosol Sci Technol 39(11):1064–1071 Gonzalez D, Nasibulin AG, Baklanov AM, Shandakov SD, Brown DP, Queipo P, Kauppinen EI (2005) A new thermophoretic precipitator for collection of nanometer-sized aerosol particles. Aerosol Sci Technol 39(11):1064–1071
87.
go back to reference Ladino L, Stetzer O, Hattendorf B, Günther D, Croft B, Lohmann U (2011) Experimental study of collection efficiencies between submicron aerosols and cloud droplets. J Atmos Sci 68(9):1853–1864 Ladino L, Stetzer O, Hattendorf B, Günther D, Croft B, Lohmann U (2011) Experimental study of collection efficiencies between submicron aerosols and cloud droplets. J Atmos Sci 68(9):1853–1864
88.
go back to reference Sparks LE, Pilat MJ (1970) Effect of diffusiophoresis on particle collection by wet scrubbers. Atmos Environ (1967) 4(6):651–660 Sparks LE, Pilat MJ (1970) Effect of diffusiophoresis on particle collection by wet scrubbers. Atmos Environ (1967) 4(6):651–660
89.
go back to reference Katoshevski D, Dodin Z, Ziskind G (2005) Aerosol clustering in oscillating flows: mathematical analysis. Atomization Sprays 15(4):401–412 Katoshevski D, Dodin Z, Ziskind G (2005) Aerosol clustering in oscillating flows: mathematical analysis. Atomization Sprays 15(4):401–412
90.
go back to reference Ruzal-Mendelevich M, Katoshevski D, Sher E (2016) Controlling nanoparticles emission with particle-grouping exhaust-pipe. Fuel 166:116–123 CrossRef Ruzal-Mendelevich M, Katoshevski D, Sher E (2016) Controlling nanoparticles emission with particle-grouping exhaust-pipe. Fuel 166:116–123 CrossRef
91.
go back to reference Zhao B, Li M, Wang L-Y, Katoshevski D, Chung T-S (2018) Particle grouping and agglomeration assisted by damper oscillation systems. Sep Purif Technol 207:12–19 CrossRef Zhao B, Li M, Wang L-Y, Katoshevski D, Chung T-S (2018) Particle grouping and agglomeration assisted by damper oscillation systems. Sep Purif Technol 207:12–19 CrossRef
92.
go back to reference Hoffmann TL, Koopmann GH (1996) Visualization of acoustic particle interaction and agglomeration: theory and experiments. J Acoust Soc Am 99(4):2130–2141 CrossRef Hoffmann TL, Koopmann GH (1996) Visualization of acoustic particle interaction and agglomeration: theory and experiments. J Acoust Soc Am 99(4):2130–2141 CrossRef
93.
go back to reference Noorpoor A, Sadighzadeh A, Habibnejad H (2013) Influence of acoustic waves on deposition and coagulation of fine particles. Int J Environ Res 7(1):131–138 Noorpoor A, Sadighzadeh A, Habibnejad H (2013) Influence of acoustic waves on deposition and coagulation of fine particles. Int J Environ Res 7(1):131–138
94.
go back to reference Yuen W, Fu S, Kwan JK, Chao CY (2014) The use of nonlinear acoustics as an energy-efficient technique for aerosol removal. Aerosol Sci Technol 48(9):907–915 CrossRef Yuen W, Fu S, Kwan JK, Chao CY (2014) The use of nonlinear acoustics as an energy-efficient technique for aerosol removal. Aerosol Sci Technol 48(9):907–915 CrossRef
95.
go back to reference Zu K, Yao Y, Cai M, Zhao F, Cheng D (2017) Modeling and experimental study on acoustic agglomeration for dust particle removal. J Aerosol Sci 114:62–76 CrossRef Zu K, Yao Y, Cai M, Zhao F, Cheng D (2017) Modeling and experimental study on acoustic agglomeration for dust particle removal. J Aerosol Sci 114:62–76 CrossRef
96.
go back to reference Cheng M, Lee P, Berner A, Shaw D (1983) Orthokinetic agglomeration in an intense acoustic field. J Colloid Interface Sci 91(1):176–187 CrossRef Cheng M, Lee P, Berner A, Shaw D (1983) Orthokinetic agglomeration in an intense acoustic field. J Colloid Interface Sci 91(1):176–187 CrossRef
97.
go back to reference Vu TV, Delgado-Saborit JM, Harrison RM (2015) Particle number size distributions from seven major sources and implications for source apportionment studies. Atmos Environ 122:114–132 CrossRef Vu TV, Delgado-Saborit JM, Harrison RM (2015) Particle number size distributions from seven major sources and implications for source apportionment studies. Atmos Environ 122:114–132 CrossRef
98.
go back to reference Stanier CO, Khlystov AY, Pandis SN (2004) Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS). Atmos Environ 38(20):3275–3284 CrossRef Stanier CO, Khlystov AY, Pandis SN (2004) Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS). Atmos Environ 38(20):3275–3284 CrossRef
99.
go back to reference Woo K, Chen D, Pui D, McMurry P (2001) Measurement of Atlanta aerosol size distributions: observations of ultrafine particle events. Aerosol Sci Technol 34(1):75–87 CrossRef Woo K, Chen D, Pui D, McMurry P (2001) Measurement of Atlanta aerosol size distributions: observations of ultrafine particle events. Aerosol Sci Technol 34(1):75–87 CrossRef
100.
go back to reference von Bismarck-Osten C, Birmili W, Ketzel M, Massling A, Petäjä T, Weber S (2013) Characterization of parameters influencing the spatio-temporal variability of urban particle number size distributions in four European cities. Atmos Environ 77:415–429 CrossRef von Bismarck-Osten C, Birmili W, Ketzel M, Massling A, Petäjä T, Weber S (2013) Characterization of parameters influencing the spatio-temporal variability of urban particle number size distributions in four European cities. Atmos Environ 77:415–429 CrossRef
101.
go back to reference Rawat VK, Buckley DT, Kimoto S, Lee M-H, Fukushima N, Hogan CJ Jr (2016) Two dimensional size–mass distribution function inversion from differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) measurements. J Aerosol Sci 92:70–82 CrossRef Rawat VK, Buckley DT, Kimoto S, Lee M-H, Fukushima N, Hogan CJ Jr (2016) Two dimensional size–mass distribution function inversion from differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) measurements. J Aerosol Sci 92:70–82 CrossRef
102.
go back to reference Fomin A, Poliak M, Rahinov I, Tsionsky V, Cheskis S (2013) Combined particle mass spectrometer–quartz crystal microbalance apparatus for in situ nanoparticle monitoring during flame assisted synthesis. Combust Flame 160(10):2131–2140 CrossRef Fomin A, Poliak M, Rahinov I, Tsionsky V, Cheskis S (2013) Combined particle mass spectrometer–quartz crystal microbalance apparatus for in situ nanoparticle monitoring during flame assisted synthesis. Combust Flame 160(10):2131–2140 CrossRef
103.
go back to reference Marple V, Olson B, Romay F, Hudak G, Geerts SM, Lundgren D (2014) Second generation micro-orifice uniform deposit impactor, 120 MOUDI-II: design, evaluation, and application to long-term ambient sampling. Aerosol Sci Technol 48(4):427–433 CrossRef Marple V, Olson B, Romay F, Hudak G, Geerts SM, Lundgren D (2014) Second generation micro-orifice uniform deposit impactor, 120 MOUDI-II: design, evaluation, and application to long-term ambient sampling. Aerosol Sci Technol 48(4):427–433 CrossRef
104.
go back to reference Keskinen J, Pietarinen K, Lehtimäki M (1992) Electrical low pressure impactor. J Aerosol Sci 23(4):353–360 CrossRef Keskinen J, Pietarinen K, Lehtimäki M (1992) Electrical low pressure impactor. J Aerosol Sci 23(4):353–360 CrossRef
105.
go back to reference Murphy DM, Froyd KD, Bian H, Brock CA, Dibb JE, DiGangi JP, Diskin G, Dollner M, Kupc A, Scheuer EM (2019) The distribution of sea-salt aerosol in the global troposphere. Atmos Chem Phys 19(6):4093–4104 CrossRef Murphy DM, Froyd KD, Bian H, Brock CA, Dibb JE, DiGangi JP, Diskin G, Dollner M, Kupc A, Scheuer EM (2019) The distribution of sea-salt aerosol in the global troposphere. Atmos Chem Phys 19(6):4093–4104 CrossRef
106.
go back to reference Stolzenburg MR, McMurry PH (1991) An ultrafine aerosol condensation nucleus counter. Aerosol Sci Technol 14(1):48–65 CrossRef Stolzenburg MR, McMurry PH (1991) An ultrafine aerosol condensation nucleus counter. Aerosol Sci Technol 14(1):48–65 CrossRef
107.
go back to reference Mirme A, Noppel M, Peil I, Salm J, Tamm E, Tammet H (1984) Multi-channel electric aerosol spectrometer. In: International commission for cloud physics. 11th international conference on atmospheric aerosols, condensation and ICE nuclei, vol 2, pp 155–159 (SEE N85-32596 21-47) Mirme A, Noppel M, Peil I, Salm J, Tamm E, Tammet H (1984) Multi-channel electric aerosol spectrometer. In: International commission for cloud physics. 11th international conference on atmospheric aerosols, condensation and ICE nuclei, vol 2, pp 155–159 (SEE N85-32596 21-47)
108.
go back to reference Sioutas C (1999) Evaluation of the measurement performance of the scanning mobility particle sizer and aerodynamic particle sizer. Aerosol Sci Technol 30(1):84–92 CrossRef Sioutas C (1999) Evaluation of the measurement performance of the scanning mobility particle sizer and aerodynamic particle sizer. Aerosol Sci Technol 30(1):84–92 CrossRef
109.
go back to reference Johnson T (2003) An engine exhaust particle sizer spectrometer for transient emission particle measurements, A117. In: 7th ETH-ETH conference on combusion generated particles Johnson T (2003) An engine exhaust particle sizer spectrometer for transient emission particle measurements, A117. In: 7th ETH-ETH conference on combusion generated particles
110.
go back to reference Manigrasso M, Protano C, Martellucci S, Mattei V, Vitali M, Avino P (2019) Evaluation of the submicron particles distribution between mountain and urban site: contribution of the transportation for defining environmental and human health issues. Int J Environ Res Public Health 16(8):1339 Manigrasso M, Protano C, Martellucci S, Mattei V, Vitali M, Avino P (2019) Evaluation of the submicron particles distribution between mountain and urban site: contribution of the transportation for defining environmental and human health issues. Int J Environ Res Public Health 16(8):1339
111.
go back to reference Wang J, Pikridas M, Spielman SR, Pinterich T (2017) A fast integrated mobility spectrometer for rapid measurement of sub-micrometer aerosol size distribution, part I: design and model evaluation. J Aerosol Sci 108:44–55 Wang J, Pikridas M, Spielman SR, Pinterich T (2017) A fast integrated mobility spectrometer for rapid measurement of sub-micrometer aerosol size distribution, part I: design and model evaluation. J Aerosol Sci 108:44–55
112.
go back to reference Baquero T, Shukrallah S, Karolia R, Osammor O, Inkson B (2015) Quantification of airborne road-side pollution carbon nanoparticles. J Phys Conf Ser 644(1):012023. IOP Publishing Baquero T, Shukrallah S, Karolia R, Osammor O, Inkson B (2015) Quantification of airborne road-side pollution carbon nanoparticles. J Phys Conf Ser 644(1):012023. IOP Publishing
113.
go back to reference Dubtsov S, Ovchinnikova T, Valiulin S, Chen X, Manninen HE, Aalto PP, Petäjä T (2017) Laboratory verification of aerosol diffusion spectrometer and the application to ambient measurements of new particle formation. J Aerosol Sci 105:10–23 Dubtsov S, Ovchinnikova T, Valiulin S, Chen X, Manninen HE, Aalto PP, Petäjä T (2017) Laboratory verification of aerosol diffusion spectrometer and the application to ambient measurements of new particle formation. J Aerosol Sci 105:10–23
114.
go back to reference Asbach C, Fissan H, Stahlmecke B, Kuhlbusch T, Pui D (2009) Conceptual limitations and extensions of lung-deposited nanoparticle surface area monitor (NSAM). J Nanopart Res 11(1):101–109 Asbach C, Fissan H, Stahlmecke B, Kuhlbusch T, Pui D (2009) Conceptual limitations and extensions of lung-deposited nanoparticle surface area monitor (NSAM). J Nanopart Res 11(1):101–109
115.
go back to reference Onasch T, Trimborn A, Fortner E, Jayne J, Kok G, Williams L, Davidovits P, Worsnop D (2012) Soot particle aerosol mass spectrometer: development, validation, and initial application. Aerosol Sci Technol 46(7):804–817 Onasch T, Trimborn A, Fortner E, Jayne J, Kok G, Williams L, Davidovits P, Worsnop D (2012) Soot particle aerosol mass spectrometer: development, validation, and initial application. Aerosol Sci Technol 46(7):804–817
116.
go back to reference Wang W, Shao L, Guo M, Hou C, Xing J, Wu F (2017) Physicochemical properties of individual airborne particles in Beijing during pollution periods. Aerosol Air Qual Res 17:3209–3219 Wang W, Shao L, Guo M, Hou C, Xing J, Wu F (2017) Physicochemical properties of individual airborne particles in Beijing during pollution periods. Aerosol Air Qual Res 17:3209–3219
117.
go back to reference Liao B-X, Gong W-C, Li Z, Tsai C-J (2019) A mass correction method for the aerosol particle mass analyzer to measure the particle mass of sub-50 nm nanoparticles. Aerosol Science and Technology 53(9):1056–1066. Liao B-X, Gong W-C, Li Z, Tsai C-J (2019) A mass correction method for the aerosol particle mass analyzer to measure the particle mass of sub-50 nm nanoparticles. Aerosol Science and Technology 53(9):1056–1066.
118.
go back to reference Su L, Ou Q, Cao LN, Du Q, Pui DY (2019) A new instrument prototype to measure the geometric surface area of nanoparticles with a time resolution of 1s. J Aerosol Sci 132:32–43 Su L, Ou Q, Cao LN, Du Q, Pui DY (2019) A new instrument prototype to measure the geometric surface area of nanoparticles with a time resolution of 1s. J Aerosol Sci 132:32–43
119.
go back to reference Scheckman JH, McMurry PH, Pratsinis SE (2009) Rapid characterization of agglomerate aerosols by in situ mass – mobility measurements. Langmuir 25(14):8248–8254 Scheckman JH, McMurry PH, Pratsinis SE (2009) Rapid characterization of agglomerate aerosols by in situ mass – mobility measurements. Langmuir 25(14):8248–8254
120.
go back to reference Olfert J, Collings N (2005) New method for particle mass classification—the Couette centrifugal particle mass analyzer. J Aerosol Sci 36(11):1338–1352 Olfert J, Collings N (2005) New method for particle mass classification—the Couette centrifugal particle mass analyzer. J Aerosol Sci 36(11):1338–1352
121.
go back to reference Johnson TJ, Olfert JS, Cabot R, Treacy C, Yurteri CU, Dickens C, McAughey J, Symonds JP (2015) Transient measurement of the effective particle density of cigarette smoke. J Aerosol Sci 87:63–74 Johnson TJ, Olfert JS, Cabot R, Treacy C, Yurteri CU, Dickens C, McAughey J, Symonds JP (2015) Transient measurement of the effective particle density of cigarette smoke. J Aerosol Sci 87:63–74
122.
go back to reference Liu C-N, Awasthi A, Hung Y-H, Tsai C-J (2013) Collection efficiency and interstage loss of nanoparticles in micro-orifice-based cascade impactors. Atmos Environ 69:325–333 Liu C-N, Awasthi A, Hung Y-H, Tsai C-J (2013) Collection efficiency and interstage loss of nanoparticles in micro-orifice-based cascade impactors. Atmos Environ 69:325–333
123.
go back to reference Tsai C-J, Liu C-N, Hung S-M, Chen S-C, Uang S-N, Cheng Y-S, Zhou Y (2012) Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces. Environ Sci Technol 46(8):4546–4552 Tsai C-J, Liu C-N, Hung S-M, Chen S-C, Uang S-N, Cheng Y-S, Zhou Y (2012) Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces. Environ Sci Technol 46(8):4546–4552
124.
go back to reference Huang C-H, Chang C-S, Chang S-H, Tsai C-J, Shih T-S, Tang D-T (2005) Use of porous foam as the substrate of an impactor for respirable aerosol sampling. J Aerosol Sci 36(11):1373–1386 Huang C-H, Chang C-S, Chang S-H, Tsai C-J, Shih T-S, Tang D-T (2005) Use of porous foam as the substrate of an impactor for respirable aerosol sampling. J Aerosol Sci 36(11):1373–1386
125.
go back to reference Chen S-C, Tsai C-J, Chen H-D, Huang C-Y, Roam G-D (2011) The influence of relative humidity on nanoparticle concentration and particle mass distribution measurements by the MOUDI. Aerosol Sci Technol 45(5):596–603 Chen S-C, Tsai C-J, Chen H-D, Huang C-Y, Roam G-D (2011) The influence of relative humidity on nanoparticle concentration and particle mass distribution measurements by the MOUDI. Aerosol Sci Technol 45(5):596–603
126.
go back to reference Olfert JS, Kulkarni P, Wang J (2008) Measuring aerosol size distributions with the fast integrated mobility spectrometer. J Aerosol Sci 39(11):940–956 Olfert JS, Kulkarni P, Wang J (2008) Measuring aerosol size distributions with the fast integrated mobility spectrometer. J Aerosol Sci 39(11):940–956
127.
go back to reference Xu R (2015) Light scattering: a review of particle characterization applications. Particuology 18:11–21 Xu R (2015) Light scattering: a review of particle characterization applications. Particuology 18:11–21
128.
go back to reference Arakawa A, Mori T, Inoue T (2012) Particle counter. Google Patents Arakawa A, Mori T, Inoue T (2012) Particle counter. Google Patents
129.
go back to reference Bauer P, Amenitsch H, Baumgartner B, Köberl G, Rentenberger C, Winkler P (2019) In-situ aerosol nanoparticle characterization by small angle X-ray scattering at ultra-low volume fraction. Nat Commun 10(1):1122 CrossRef Bauer P, Amenitsch H, Baumgartner B, Köberl G, Rentenberger C, Winkler P (2019) In-situ aerosol nanoparticle characterization by small angle X-ray scattering at ultra-low volume fraction. Nat Commun 10(1):1122 CrossRef
130.
go back to reference Wang J, Flagan RC, Seinfeld JH (2002) Diffusional losses in particle sampling systems containing bends and elbows. J Aerosol Sci 33(6):843–857 Wang J, Flagan RC, Seinfeld JH (2002) Diffusional losses in particle sampling systems containing bends and elbows. J Aerosol Sci 33(6):843–857
131.
go back to reference Hering SV, McMurry PH (1991) Optical counter response to monodisperse atmospheric aerosols. Atmos Environ Part A 25(2):463–468 Hering SV, McMurry PH (1991) Optical counter response to monodisperse atmospheric aerosols. Atmos Environ Part A 25(2):463–468
132.
go back to reference Kuang C (2016) Condensation particle counter instrument handbook. DOE ARM Climate Research Facility, Washington, DC Kuang C (2016) Condensation particle counter instrument handbook. DOE ARM Climate Research Facility, Washington, DC
133.
go back to reference Kuang C, Chen M, McMurry PH, Wang J (2012) Modification of laminar flow ultrafine condensation particle counters for the enhanced detection of 1 nm condensation nuclei. Aerosol Sci Technol 46(3):309–315 Kuang C, Chen M, McMurry PH, Wang J (2012) Modification of laminar flow ultrafine condensation particle counters for the enhanced detection of 1 nm condensation nuclei. Aerosol Sci Technol 46(3):309–315
134.
go back to reference Kangasluoma J, Ahonen L, Attoui M, Vuollekoski H, Kulmala M, Petäjä T (2015) Sub-3 nm particle detection with commercial TSI 3772 and Airmodus A20 fine condensation particle counters. Aerosol Sci Technol 49(8):674–681 Kangasluoma J, Ahonen L, Attoui M, Vuollekoski H, Kulmala M, Petäjä T (2015) Sub-3 nm particle detection with commercial TSI 3772 and Airmodus A20 fine condensation particle counters. Aerosol Sci Technol 49(8):674–681
135.
go back to reference Barmpounis K, Ranjithkumar A, Schmidt-Ott A, Attoui M, Biskos G (2018) Enhancing the detection efficiency of condensation particle counters for sub-2 nm particles. J Aerosol Sci 117:44–53 Barmpounis K, Ranjithkumar A, Schmidt-Ott A, Attoui M, Biskos G (2018) Enhancing the detection efficiency of condensation particle counters for sub-2 nm particles. J Aerosol Sci 117:44–53
136.
go back to reference Picard D, Attoui M, Sellegri K (2019) B3010: a boosted TSI 3010 condensation particle counter for airborne studies. Atmos Meas Tech 12(4):2531–2543 Picard D, Attoui M, Sellegri K (2019) B3010: a boosted TSI 3010 condensation particle counter for airborne studies. Atmos Meas Tech 12(4):2531–2543
137.
go back to reference Iida K, Stolzenburg MR, McMurry PH (2009) Effect of working fluid on sub-2 nm particle detection with a laminar flow ultrafine condensation particle counter. Aerosol Sci Technol 43(1):81–96 Iida K, Stolzenburg MR, McMurry PH (2009) Effect of working fluid on sub-2 nm particle detection with a laminar flow ultrafine condensation particle counter. Aerosol Sci Technol 43(1):81–96
138.
go back to reference Knutson E, Whitby K (1975) Aerosol classification by electric mobility: apparatus, theory, and applications. J Aerosol Sci 6(6):443–451 Knutson E, Whitby K (1975) Aerosol classification by electric mobility: apparatus, theory, and applications. J Aerosol Sci 6(6):443–451
139.
go back to reference Intra P, Tippayawong N (2008) An overview of differential mobility analyzers for size classification of nanometer-sized aerosol particles. Songklanakarin J Sci Technol 30:243–256 Intra P, Tippayawong N (2008) An overview of differential mobility analyzers for size classification of nanometer-sized aerosol particles. Songklanakarin J Sci Technol 30:243–256
140.
go back to reference Wang SC, Flagan RC (1990) Scanning electrical mobility spectrometer. Aerosol Sci Technol 13(2):230–240 Wang SC, Flagan RC (1990) Scanning electrical mobility spectrometer. Aerosol Sci Technol 13(2):230–240
141.
go back to reference Wang Y, Pinterich T, Wang J (2018) Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer. J Aerosol Sci 121:12–20 Wang Y, Pinterich T, Wang J (2018) Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer. J Aerosol Sci 121:12–20
142.
go back to reference Tröstl J, Tritscher T, Bischof OF, Horn H-G, Krinke T, Baltensperger U, Gysel M (2015) Fast and precise measurement in the sub-20 nm size range using a scanning mobility particle sizer. J Aerosol Sci 87:75–87 Tröstl J, Tritscher T, Bischof OF, Horn H-G, Krinke T, Baltensperger U, Gysel M (2015) Fast and precise measurement in the sub-20 nm size range using a scanning mobility particle sizer. J Aerosol Sci 87:75–87
143.
go back to reference Johnson T, Caldow R, Pöcher A, Mirme A, Kittelson D (2004) A new electrical mobility particle sizer spectrometer for engine exhaust particle measurements. SAE technical paper Johnson T, Caldow R, Pöcher A, Mirme A, Kittelson D (2004) A new electrical mobility particle sizer spectrometer for engine exhaust particle measurements. SAE technical paper
144.
go back to reference Asbach C, Kaminski H, Fissan H, Monz C, Dahmann D, Mülhopt S, Paur HR, Kiesling HJ, Herrmann F, Voetz M (2009) Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements. J Nanopart Res 11(7):1593 Asbach C, Kaminski H, Fissan H, Monz C, Dahmann D, Mülhopt S, Paur HR, Kiesling HJ, Herrmann F, Voetz M (2009) Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements. J Nanopart Res 11(7):1593
145.
go back to reference Levin M, Gudmundsson A, Pagels J, Fierz M, Mølhave K, Löndahl J, Jensen K, Koponen I (2015) Limitations in the use of unipolar charging for electrical mobility sizing instruments: a study of the fast mobility particle sizer. Aerosol Sci Technol 49(8):556–565 Levin M, Gudmundsson A, Pagels J, Fierz M, Mølhave K, Löndahl J, Jensen K, Koponen I (2015) Limitations in the use of unipolar charging for electrical mobility sizing instruments: a study of the fast mobility particle sizer. Aerosol Sci Technol 49(8):556–565
146.
go back to reference Kulkarni P, Wang J (2006) New fast integrated mobility spectrometer for real-time measurement of aerosol size distribution—I: concept and theory. J Aerosol Sci 37(10):1303–1325 Kulkarni P, Wang J (2006) New fast integrated mobility spectrometer for real-time measurement of aerosol size distribution—I: concept and theory. J Aerosol Sci 37(10):1303–1325
147.
go back to reference Flagan RC (2004) Opposed migration aerosol classifier (OMAC). Aerosol Sci Technol 38(9):890–899 Flagan RC (2004) Opposed migration aerosol classifier (OMAC). Aerosol Sci Technol 38(9):890–899
148.
go back to reference Zhang M, Wexler AS (2006) Cross flow ion mobility spectrometry: theory and initial prototype testing. Int J Mass Spectrom 258(1–3):13–20 Zhang M, Wexler AS (2006) Cross flow ion mobility spectrometry: theory and initial prototype testing. Int J Mass Spectrom 258(1–3):13–20
149.
go back to reference Ranjan M, Dhaniyala S (2007) Theory and design of a new miniature electrical-mobility aerosol spectrometer. J Aerosol Sci 38(9):950–963 Ranjan M, Dhaniyala S (2007) Theory and design of a new miniature electrical-mobility aerosol spectrometer. J Aerosol Sci 38(9):950–963
150.
go back to reference Knutson EO (1999) History of diffusion batteries in aerosol measurements. Aerosol Sci Technol 31(2–3):83–128 Knutson EO (1999) History of diffusion batteries in aerosol measurements. Aerosol Sci Technol 31(2–3):83–128
151.
go back to reference Vosburgh DJ, Klein T, Sheehan M, Anthony TR, Peters TM (2013) Design and evaluation of a personal diffusion battery. Aerosol Sci Technol 47(4):435–443 Vosburgh DJ, Klein T, Sheehan M, Anthony TR, Peters TM (2013) Design and evaluation of a personal diffusion battery. Aerosol Sci Technol 47(4):435–443
152.
go back to reference Onischuk A, Valiulin S, Baklanov A, Moiseenko P, Mitrochenko V (2018) Determination of the aerosol particle size distribution by means of the diffusion battery: analytical inversion. Aerosol Sci Technol 52(8):841–853 Onischuk A, Valiulin S, Baklanov A, Moiseenko P, Mitrochenko V (2018) Determination of the aerosol particle size distribution by means of the diffusion battery: analytical inversion. Aerosol Sci Technol 52(8):841–853
153.
go back to reference Fierz M, Weimer S, Burtscher H (2009) Design and performance of an optimized electrical diffusion battery. J Aerosol Sci 40(2):152–163 Fierz M, Weimer S, Burtscher H (2009) Design and performance of an optimized electrical diffusion battery. J Aerosol Sci 40(2):152–163
154.
go back to reference Burtscher H, Scherrer L, Siegmann H (2001) The electrical diffusion battery for dynamic classification of nanoparticles. In: Proceedings of ETH conference on nanoparticle measurement. BUWAL, Bern Burtscher H, Scherrer L, Siegmann H (2001) The electrical diffusion battery for dynamic classification of nanoparticles. In: Proceedings of ETH conference on nanoparticle measurement. BUWAL, Bern
156.
go back to reference Canagaratna M, Jayne J, Jimenez J, Allan J, Alfarra M, Zhang Q, Onasch T, Drewnick F, Coe H, Middlebrook A (2007) Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom Rev 26(2):185–222 Canagaratna M, Jayne J, Jimenez J, Allan J, Alfarra M, Zhang Q, Onasch T, Drewnick F, Coe H, Middlebrook A (2007) Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom Rev 26(2):185–222
157.
go back to reference Su Y, Sipin MF, Furutani H, Prather KA (2004) Development and characterization of an aerosol time-of-flight mass spectrometer with increased detection efficiency. Anal Chem 76(3):712–719 Su Y, Sipin MF, Furutani H, Prather KA (2004) Development and characterization of an aerosol time-of-flight mass spectrometer with increased detection efficiency. Anal Chem 76(3):712–719
158.
go back to reference Goldstein JI, Newbury DE, Michael JR, Ritchie NW, Scott JHJ, Joy DC (2017) Scanning electron microscopy and X-ray microanalysis. Springer, New York Goldstein JI, Newbury DE, Michael JR, Ritchie NW, Scott JHJ, Joy DC (2017) Scanning electron microscopy and X-ray microanalysis. Springer, New York
159.
go back to reference Zhou W, Wang ZL (2007) Scanning microscopy for nanotechnology: techniques and applications. Springer science & business media, New York Zhou W, Wang ZL (2007) Scanning microscopy for nanotechnology: techniques and applications. Springer science & business media, New York
160.
go back to reference Ferrante R, Boccuni F, Tombolini F, Iavicoli S (2019) Measurement techniques of exposure to nanomaterials in workplaces. In: Nanotechnology in eco-efficient construction, 2nd edn. Woodhead Publishing, Sawston, Cambridge, UK, pp 785–813 Ferrante R, Boccuni F, Tombolini F, Iavicoli S (2019) Measurement techniques of exposure to nanomaterials in workplaces. In: Nanotechnology in eco-efficient construction, 2nd edn. Woodhead Publishing, Sawston, Cambridge, UK, pp 785–813
161.
go back to reference Gonzalez-Pech NI, Stebounova LV, Ustunol IB, Park JH, Renee Anthony T, Peters TM, Grassian VH (2019) Size, composition, morphology, and health implications of airborne incidental metal-containing nanoparticles. J Occup Environ Hyg 16(6):1–13 Gonzalez-Pech NI, Stebounova LV, Ustunol IB, Park JH, Renee Anthony T, Peters TM, Grassian VH (2019) Size, composition, morphology, and health implications of airborne incidental metal-containing nanoparticles. J Occup Environ Hyg 16(6):1–13
162.
go back to reference Ervik TK, Benker N, Weinbruch S, Thomassen Y, Ellingsen DG, Berlinger B (2019) Size distribution and single particle characterization of airborne particulate matter collected in a silicon carbide plant. Environ Sci Process Impacts 21(3):564–574 Ervik TK, Benker N, Weinbruch S, Thomassen Y, Ellingsen DG, Berlinger B (2019) Size distribution and single particle characterization of airborne particulate matter collected in a silicon carbide plant. Environ Sci Process Impacts 21(3):564–574
Metadata
Title
Airborne Nanoparticles: Control and Detection
Authors
Mohsen Rezaei
Matthew Stanley Johnson
Copyright Year
2021
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-0716-0596-7_1099