Skip to main content
Top

2023 | OriginalPaper | Chapter

Airship Turn Performance Estimated From Efficient Potential Flow Panel Method

Authors : Jesús Gonzalo, Diego Domínguez, Deibi López, Carmen Salguero

Published in: Lighter Than Air Systems

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A first-order potential flow panel method is used in the present work to calculate aerodynamic yaw torques and other parameters involved in the turning performance of a stratospheric lighter-than-air airship. A specific mesh is generated to model the airship geometry in order to solve the Laplace potential flow equation by a sum of source and doubled distributions on the boundary, using a mix of Neumann and Dirichlet boundary conditions. As a result, it is possible to simulate the effect of the rudder and elevons within their angular range at different flight conditions. Air flow rotation is included in the boundary conditions to simulate airship yaw rate. Thus, the result of the model includes not only yaw momentum but also its derivative with respect to yaw rate and the lateral force. They are contrasted with a series of tests carried out in a wind tunnel for a stratospheric airship model and with the literature. Despite of the simplicity of the potential method (5 s execution for a 6000-cell mesh) compared to a more complex CFD simulations, the conclusions demonstrate that the correlation between numerical and experimental data is high enough to provide valuable performance insights during the design process, showing a considerable reduction of the necessary computational resources. A 30 m ECOSAT model with proper fins can turn with a steady radius of 50 to 60 m.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yuan J et al (2020) Trajectory tracking control for a stratospheric airship subject to constraints and unknown disturbances. IEEE Access 8:31453–31470CrossRef Yuan J et al (2020) Trajectory tracking control for a stratospheric airship subject to constraints and unknown disturbances. IEEE Access 8:31453–31470CrossRef
2.
go back to reference Khoury GA (2012) Airship technology. Cambridge University Press Khoury GA (2012) Airship technology. Cambridge University Press
3.
go back to reference Ashraf MZ, Choudhry MA (2013) Dynamic modeling of the airship with matlab using geometrical aerodynamic parameters. Aerosp Sci Technol 25:56–64CrossRef Ashraf MZ, Choudhry MA (2013) Dynamic modeling of the airship with matlab using geometrical aerodynamic parameters. Aerosp Sci Technol 25:56–64CrossRef
4.
go back to reference Carishner GE, Nicolai LM (2013) Fundamentals of aircraft and airship design: airship design and case studies. AIAA, Reston, VA Carishner GE, Nicolai LM (2013) Fundamentals of aircraft and airship design: airship design and case studies. AIAA, Reston, VA
5.
go back to reference Suvarna S et al (2021) Optimization of fins to minimize directional instability in airships. J Aircr 59(2):317–328MathSciNetCrossRef Suvarna S et al (2021) Optimization of fins to minimize directional instability in airships. J Aircr 59(2):317–328MathSciNetCrossRef
6.
go back to reference Ashley H, Landahl M (1965) Aerodynamics of wings and bodies. Addison-Wesley Ashley H, Landahl M (1965) Aerodynamics of wings and bodies. Addison-Wesley
7.
go back to reference Gonzalo J et al (2020) On the development of a parametric aerodynamic model of a stratospheric airship. Aerosp Sci Technol 107:106316CrossRef Gonzalo J et al (2020) On the development of a parametric aerodynamic model of a stratospheric airship. Aerosp Sci Technol 107:106316CrossRef
8.
go back to reference Carichner GE, Nicolai LM (2013) Fundamentals of aircraft and airship design, airship design and case studies, vol 2. AIAA education series Carichner GE, Nicolai LM (2013) Fundamentals of aircraft and airship design, airship design and case studies, vol 2. AIAA education series
Metadata
Title
Airship Turn Performance Estimated From Efficient Potential Flow Panel Method
Authors
Jesús Gonzalo
Diego Domínguez
Deibi López
Carmen Salguero
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-6049-9_5

Premium Partner